Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


SMOS satellite instrument comes alive

The MIRAS instrument on ESA's SMOS satellite, launched earlier this month, has been switched on and is operating normally. MIRAS will map soil moisture and ocean salinity to improve our understanding of the role these two key variables play in regulating Earth’s water cycle.

"Following the switch-on, MIRAS is working beautifully well with all key subsystems, including all of the receivers, the optical fibres and the correlator unit, in perfect functioning condition," said ESA’s Manuel Martin-Neira, SMOS Instrument Principal Engineer.

"We have been able to produce reasonable test data even without in-orbit calibration."

MIRAS (Microwave Imaging Radiometer using Aperture Synthesis) is an L-band radiometer with 69 receivers mounted on three deployed arms to measure the radiation coming from Earth.

In order to measure accurately, the receivers must be within a +/-3°C temperature range of each other, with the optimal operating temperature at 22°C. Heaters are installed on the satellite to achieve the temperature needed.

First MIRAS signal received
Switching on the instrument begins with activating the central payload computer, which controls many of the instrument’s subsystems and gives instructions to the distributed command and monitoring modes on each arm.

To assess the electrical performance of the instrument after switch-on while limiting the consumption of heater power, the physical temperature for start up was set to 10°C.

"The active thermal control is now in operation and is keeping the instrument well within the expected temperature range," Mr Martin-Neira said. "Tomorrow we expect to assess the payload at the final 22°C temperature."

The central payload computer also controls the 'mass memory', which collects all the science data from the receivers and sends them to receiving stations on the ground. The high-speed downlink, which transmits the data to the ground station, was switched on, and data have been transmitted to ESA’s European Space Astronomy Centre (ESAC), in Villafranca, Spain. The data acquisition and processing systems located at ESAC are also working well, and the first test of the product generation system has been successful.

"With the critical launch and early orbit phase completed, the engineers can now evaluate the quality of the downlinks and concentrate on the calibration of the instrument," SMOS Project Manager Achim Hahne said.

SMOS in orbit
Data provided by MIRAS will be important for weather and climate modelling, water resource management, agriculture planning, ocean currents and circulation studies and forecasting hazardous events such as floods.

"We are very happy that we have received the first data from MIRAS, which we expect to make very strong contributions to scientists' understanding of Earth's water cycle," said Guillermo Buenadicha, SMOS Payload Operations Engineer at ESAC.

"We are now looking forward to analysing the first data and to start testing the processing systems in the ground station," SMOS Mission Manager Susanne Mecklenburg said.

The SMOS (Soil Moisture and Ocean Salinity) Earth Explorer satellite and ESA's Proba-2 were launched into orbit together from the Plesetsk Cosmodrome in northern Russia on 2 November.

Robert Meisner | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>