Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SmoothIT - Incentive-based Models for Peer-to-peer Networks

05.12.2008
The largest share of data traffic on the Internet is attributable to peer-to-peer networks which are independent of defined Internet Service Providers.

The EU project SmoothIT under the leadership of Burkhard Stiller from the University of Zurich now aims to develop economic incentive schemes with which providers should more efficiently adapt their networks to peer-to-peer use and therefore be able to offer cheaper and simultaneously better services.

Data traffic on the Internet doubles every 18 months. The weight of so much data is borne by networks of telecommunication companies and Internet Service Providers (ISP). They are orientated to a type of data traffic in which the end-user pays for services - and thus also the corresponding data traffic - from a central service provider.

However, most of the data traffic on the Internet - namely 80 percent - is attributable to so-called peer-to-peer applications. These are applications such as the download network BitTorrent, with which computers belonging to end-users exchange huge volumes of data between each other without the flow of data being steered by the central server of a service provider. With the increasing bandwidth of Internet connections, the significance of peer-to-peer applications is going to increase even more strongly.

The peer-to-peer networks, also known as "overlay networks", overlay those network infrastructures made available and maintained by ISPs. This means for operators that the distribution of data and data flows on their networks is being defined more and more by applications of that kind, over which ISPs no longer have any direct influence. Therefore, a decisive question for ISPs is how, on one hand, they influence the structure of such overlay networks and, on the other hand, how they can adapt their own network better to them.

The SmoothIT project (Simple Economic Management Approaches of Overlay Traffic in Heterogeneous Internet Topologies) from Professor Burkhard Stiller, Communication Systems, from the University of Zurich now aims at developing suitable mechanisms which enable overlay networks to be structured in such a way that they are as efficient and thus as inexpensive as possible for users, overlay providers, and for ISPs. This should be achieved by means of economic incentives which encourage cooperation between ISPs and operators of overlay networks.

An example is that ISPs could provide the user of an overlay network with a list of peer computers which offer a specific file for downloading. The list would be structured by distances. The user has a vested interest in downloading the file from the nearest peer because that would mean lowest delay times. For the ISP, it means that the data would reach the user in the most efficient way. In order to gather information on the distances between peers, the ISP would have to work together with operators of overlay networks and with other ISPs too, because the overlay networks stretch over networks of various ISPs.

In order to conceptualise suitable economic incentive systems for this cooperation, Professor Stiller and his team initially want to measure data traffic in existing overlay networks. The effect of incentive systems will be examined in simulation models. On the basis of resulting findings, network protocols will be designed and tested in two different field trials. For the implementation of incentive systems, it will also be necessary to create suitable protocols for signalling which enable the measurement, calculation, and partial control of the data traffic generated by overlay networks.

In order to ensure the practicability in today's networks, ISPs and telecommunication providers also take part in this research project. The research department of Telefonica in Spain, the European research laboratory of DOCOMO in Germany, and the ISP PrimeTel in Cyprus have formulated requirements of the solution to be developed from the point of view of industry.

SmoothIT, which is being financed by the 7th framework programme of the EU, should enable ISPs to better attune their networks to peer-to-peer data flows and thus to reduce infrastructure investments and maintenance costs. "SmoothIT will enable ISPs to manage most of the peer-to-peer data traffic more precisely than in the past and to charge for it financially in an appropriate manner", says Burkhard Stiller. "This will mean that they will be able to plan their capacities more efficiently and inexpensively, and maximise their income for minimised data traffic." As the data traffic will also be more efficiently localised and transported over the right ISP data lines, users will also benefit simultaneously from more reliable and qualitatively improved services.

Apart from the University of Zurich, the following institutions are participating in SmoothIT (Simple Economic Management Approaches of Overlay Traffic in Heterogeneous Internet Topologies):
- Technical University of Darmstadt
- DOCOMO Communications Laboratories Europe GmbH
- Athens University of Economics and Business
- Julius-Maximilians Universität Würzburg
- AGH University of Science and Technology
- PrimeTel Limited
- Intracom S.A Telecom Solutions
- Téléfonica Investigación y Desarrollo
The programme is being financed by 3 million Euro from the 7th framework programme of the EU and is running until the end of 2010.

For further information: http://www.smoothit.org

Contact:
Prof. Dr. Burkhard Stiller, University of Zurich, Department of Informatics IFI
Tel. +41 44 635 4355
stiller@ifi.uzh.ch

Beat Müller | idw
Further information:
http://www.smoothit.org
http://www.uzh.ch/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>