Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoother sailing through sharing

29.01.2015

Mathematical analysis reveals how to maximize access to mobile networks by seamlessly ‘offloading’ traffic to smaller Wi-Fi and cellular systems

Data-intense multimedia applications are stretching cellular network capacities to their limits, but A*STAR researchers have developed a strategy to ease this burden using ‘data offloading’1. By using high-level computational algorithms to investigate data transfer between cellular base stations and ‘complementary’ setups such as home Wi-Fi systems, the team identified optimal ways to satisfy user demands across multiple, heterogeneous networks.


Using Wi-Fi access points to deliver content to mobile devices can significantly boost the speed and capacity of wireless networks.

© CurvaBezier/iStock/Thinkstock

Wi-Fi networks and small, low-power femtocell and picocell cellular antennas are inexpensive, simple to install, and highly compatible with existing smartphones and tablets. For these reasons, mobile operators consider data offloading to these complementary networks as a more feasible way to expand capacity than installing obtrusive infrastructure or bidding for new frequency spectra.

Chin Keong Ho and Sumei Sun from the A*STAR Institute of Infocomm Research in Singapore and colleagues probed one of the biggest obstacles for implementing this sharing technique: deciding when and how much data to offload from the primary network. “Many parameters, such as user requirements and cellular coverage, can affect the real-time performance of the base station,” says Ho. “The dynamics of network and user traffic make optimal offloading decisions very challenging.”

Ho notes that the loads, or demand for cellular service, of networks using data offloading are coupled through complex, nonlinear relationships. For example, increasing the load on one base station can produce interference with another base station. To maintain the same quality of service, the second base station may have to increase its load or power — subtle changes that can ripple through the combined Wi-Fi and cellular networks.

To resolve these problems, the team developed a simple but accurate model to describe a network of base stations that can interfere with each other and a series of complementary cells that can accept excess data. They then employed advanced mathematical tools to produce a load-coupled equation that characterized and optimized the data-sharing network in detail.

As a result, the team could suggest potential strategies. “One interesting finding is that for certain networks, it is impossible to satisfy user demands no matter how large the powers of the base stations,” says Ho. “Consequently, data offloading is the only means to serve the users — a finding that highlights the fundamental importance of this approach.”

The researchers believe that their load-coupling model could find practical use by determining the optimal number of small cells or Wi-Fi access points in an offloading system. Furthermore, their equations could ‘future-proof’ mobile networks by analyzing performance degradation as user requirements inevitably change.

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research


Reference
Ho, C. K., Yuan, D. & Sun, S. Data offloading in load coupled networks: A utility maximization framework. IEEE Transactions on Wireless Communications 13, 1921–1931 (2014). | article

A*STAR Research | ResearchSEA
Further information:
http://www.research.a-star.edu.sg/research/7164
http://www.researchsea.com

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>