Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smartphone understands gestures

09.10.2014

Professor Otmar Hilliges and his staff at ETH Zurich have developed a new app enabling users to operate their smartphone with gestures. This development expands the range of potential interactions with such devices.

It does seem slightly odd at first: you hold the phone in one hand, and move the other in the air above its built-in camera making gestures that resemble sign language. Sometimes you move your index finger to the left, sometimes to the right. You can spread out your fingers, or imitate a pair of pliers or the firing of a pistol. These gestures are not, however, intended for communicating with deaf people; they are for controlling your smartphone.


Reminiscent of sign language: gesture control significantly expands the range of smartphone functionality. (Screenshot: ETH Zurich)

By mimicking the firing of a pistol, for example, a user can switch to another browser tab, change the map’s view from satellite to standard, or shoot down enemy planes in a game. Spreading out your fingers magnifies a section of a map or scrolls the page of a book forwards.

All this gesturing wizardry is made possible by a new type of algorithm developed by Jie Song, a Master’s student in the working group headed by by Otmar Hilliges, Professor of Computer Science. The researchers presented the app to an audience of industry professionals at the UIST symposium in Honolulu, Hawaii.

Intelligent programming uses computer memory

The program uses the smartphone’s built-in camera to register its environment. It does not evaluate depth or colour. The information it does register – the shape of the gesture, the parts of the hand – is reduced to a simple outline that is classified according to stored gestures. The program then executes the command associated with the gesture it observes. The program also recognises the hand’s distance from the camera and warns the user when the hand is either too close or too far away.

“Many movement-recognition programs need plenty of processor and memory power”, explains Hilliges, adding that their new algorithm uses a far smaller portion of computer memory and is thus ideal for smartphones. He believes the application is the first of its kind that can run on a smartphone. The app’s minimal processing footprint means it could also run on smart watches or in augmented-reality glasses.

More control

The program currently recognises six different gestures and executes their corresponding commands. Although the researchers have tested 16 outlines, this is not the app’s theoretical limit. What matters is that gestures generate unambiguous outlines. Gestures that resemble others are not suitable for this application. “To expand its functionality, we’re going to add further classification schemes to the program”, says the ETH researcher.

He is convinced that this new way of operating smartphones greatly increases the range of interactivity. The researcher’s objective is to keep the gestures as simple as possible, so that users can operate their smartphone effortlessly.

But will smartphone users want to adapt to this new style of interaction? Otmar Hilliges is confident they will. Gesture control will not replace touchscreen control, but supplement it. “People got used to operating computer games with their movements.” Touchscreens, Hilliges reminds us, also required a very long adjustment period before making a big impact in consumers’ lives. He is therefore certain that this application – or at least parts of it – will find its way onto the market.

Reference

Song J, Sörös G, Pece F, Fanello S, Izadi S, Keskin C, Hilliges O: In-air Gestures Around Unmodified Mobile Devices, ACM User Interface Software and Technology Symposium, Honolulu, Hawaii, 7 October 2014

Otmar Hilliges | Eurek Alert!
Further information:
https://www.ethz.ch/en/news-and-events/eth-news/news/2014/10/smartphone-understands-gestures.html

Further reports about: ETH Zurich Interface Smartphone algorithm computer memory gesture gestures interactivity movements

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>