Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smartphone App Helps You Find Friends in a Crowd

Can a smartphone app enable meaningful, face-to-face conversation?

Engineers are trying to find out, with software that helps people locate their friends in a crowd – and make new friends who share similar interests.

The software, called eShadow, makes its debut at the IEEE International Conference on Distributed Computing Systems (ICDCS) on Thursday, June 23 in Minneapolis.

It uses nearby wireless networks and smartphones’ wireless communication technologies to alert users that a friend who also uses the software is in the area – and gives directions to that friend’s location.

Dong Xuan, associate professor of computer science and engineering at Ohio State University, hopes that his research group’s software will also build bridges between strangers who share personal or professional interests.

At a business meeting such as ICDCS, for example, the software could remind a user of a forgotten acquaintance’s name, or help him or her make new professional contacts in the same area of research.

Since it enables face-to-face meetings, eShadow is a complement to online social networks such as Facebook, which excel at connecting people who are far apart, Xuan said.

“Today, online social networking has advanced dramatically, but our ability to meet people face-to-face hasn’t gotten any easier,” he said. “We want eShadow to close social gaps and connect people in meaningful ways, while keeping the technology non-intrusive and protecting privacy.”

The name eShadow comes from the idea that users input their interests into the software, and their smartphone broadcasts those interests to certain other users of the software – but only within 50 yards of the phone. So as users move, the broadcast follows them around like a shadow.

As to users’ safety, Xuan feels that, at least for some situations, meeting someone in person is safer than meeting them online.

“Online, people can steal others’ identity, or lie easily without detection. It’s much harder to pull off a masquerade in person,” he said.

Plus, users only share information which they want to share, and can observe potential friends at a distance before deciding whether to introduce themselves. Young people, Xuan pointed out, are especially comfortable with putting personal information online, and could readily adapt to using the software.

That said, people can be selective about who they wish to receive their eShadow signals. Users can select individuals from their phone’s contact list, and specifically de-select people as well.

“Say I’m from Ohio State, and someone else is from the University of Michigan, so I don’t want to talk to them. I just tell the software to ignore anyone who says they’re from Michigan,” Xuan laughed.

The researchers’ biggest challenges concerned efficient use of wireless communication, explained doctoral student Jin Teng. He and his colleagues wrote algorithms that let smartphones send and receive eShadow signals quickly, but without overwhelming a network.

In outdoor tests on the Ohio State campus, they measured how fast the software could detect users who were 20, 30, and 50 yards apart. They tested different numbers of users, from two to seven.

In all cases, the software was able to connect people within about half a minute – an average of 25 seconds for two users, and 35 seconds for seven.

Xuan noted that eShadow’s algorithms could be useful beyond socializing. Soldiers could use something akin to eShadow to locate each other on the battlefield.

Presently, the software works best when people move infrequently. Xuan and his research group are enhancing it to better accommodate motion. They are also extending it from Windows Mobile to support multiple smartphone platforms such as Android, and exploring opportunities for publicly releasing the software in the near future.

Other engineers on Xuan’s team include Xiaole Bai, an assistant professor of computer and information science at the University of Massachusetts at Dartmouth, and Boying Zhang, Xinfeng Li, and Adam C. Champion, all doctoral students at Ohio State.

This research was funded by Xuan’s National Science Foundation (NSF) CAREER award, an NSF Computer and Network Systems grant, and an Army Research Office grant.

Contact: Dong Xuan, (614) 292-2958;

Written by Pam Frost Gorder, (614) 292-9475;

[Editor’s note: Xuan is traveling internationally until July 20, and is best reached by email or through Pam Frost Gorder.]

Pam Frost Gorder | Newswise Science News
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>