Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smartphone App Helps You Find Friends in a Crowd

27.06.2011
Can a smartphone app enable meaningful, face-to-face conversation?

Engineers are trying to find out, with software that helps people locate their friends in a crowd – and make new friends who share similar interests.

The software, called eShadow, makes its debut at the IEEE International Conference on Distributed Computing Systems (ICDCS) on Thursday, June 23 in Minneapolis.

It uses nearby wireless networks and smartphones’ wireless communication technologies to alert users that a friend who also uses the software is in the area – and gives directions to that friend’s location.

Dong Xuan, associate professor of computer science and engineering at Ohio State University, hopes that his research group’s software will also build bridges between strangers who share personal or professional interests.

At a business meeting such as ICDCS, for example, the software could remind a user of a forgotten acquaintance’s name, or help him or her make new professional contacts in the same area of research.

Since it enables face-to-face meetings, eShadow is a complement to online social networks such as Facebook, which excel at connecting people who are far apart, Xuan said.

“Today, online social networking has advanced dramatically, but our ability to meet people face-to-face hasn’t gotten any easier,” he said. “We want eShadow to close social gaps and connect people in meaningful ways, while keeping the technology non-intrusive and protecting privacy.”

The name eShadow comes from the idea that users input their interests into the software, and their smartphone broadcasts those interests to certain other users of the software – but only within 50 yards of the phone. So as users move, the broadcast follows them around like a shadow.

As to users’ safety, Xuan feels that, at least for some situations, meeting someone in person is safer than meeting them online.

“Online, people can steal others’ identity, or lie easily without detection. It’s much harder to pull off a masquerade in person,” he said.

Plus, users only share information which they want to share, and can observe potential friends at a distance before deciding whether to introduce themselves. Young people, Xuan pointed out, are especially comfortable with putting personal information online, and could readily adapt to using the software.

That said, people can be selective about who they wish to receive their eShadow signals. Users can select individuals from their phone’s contact list, and specifically de-select people as well.

“Say I’m from Ohio State, and someone else is from the University of Michigan, so I don’t want to talk to them. I just tell the software to ignore anyone who says they’re from Michigan,” Xuan laughed.

The researchers’ biggest challenges concerned efficient use of wireless communication, explained doctoral student Jin Teng. He and his colleagues wrote algorithms that let smartphones send and receive eShadow signals quickly, but without overwhelming a network.

In outdoor tests on the Ohio State campus, they measured how fast the software could detect users who were 20, 30, and 50 yards apart. They tested different numbers of users, from two to seven.

In all cases, the software was able to connect people within about half a minute – an average of 25 seconds for two users, and 35 seconds for seven.

Xuan noted that eShadow’s algorithms could be useful beyond socializing. Soldiers could use something akin to eShadow to locate each other on the battlefield.

Presently, the software works best when people move infrequently. Xuan and his research group are enhancing it to better accommodate motion. They are also extending it from Windows Mobile to support multiple smartphone platforms such as Android, and exploring opportunities for publicly releasing the software in the near future.

Other engineers on Xuan’s team include Xiaole Bai, an assistant professor of computer and information science at the University of Massachusetts at Dartmouth, and Boying Zhang, Xinfeng Li, and Adam C. Champion, all doctoral students at Ohio State.

This research was funded by Xuan’s National Science Foundation (NSF) CAREER award, an NSF Computer and Network Systems grant, and an Army Research Office grant.

Contact: Dong Xuan, (614) 292-2958; Xuan.3@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

[Editor’s note: Xuan is traveling internationally until July 20, and is best reached by email or through Pam Frost Gorder.]

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>