Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smartphone App Helps You Find Friends in a Crowd

27.06.2011
Can a smartphone app enable meaningful, face-to-face conversation?

Engineers are trying to find out, with software that helps people locate their friends in a crowd – and make new friends who share similar interests.

The software, called eShadow, makes its debut at the IEEE International Conference on Distributed Computing Systems (ICDCS) on Thursday, June 23 in Minneapolis.

It uses nearby wireless networks and smartphones’ wireless communication technologies to alert users that a friend who also uses the software is in the area – and gives directions to that friend’s location.

Dong Xuan, associate professor of computer science and engineering at Ohio State University, hopes that his research group’s software will also build bridges between strangers who share personal or professional interests.

At a business meeting such as ICDCS, for example, the software could remind a user of a forgotten acquaintance’s name, or help him or her make new professional contacts in the same area of research.

Since it enables face-to-face meetings, eShadow is a complement to online social networks such as Facebook, which excel at connecting people who are far apart, Xuan said.

“Today, online social networking has advanced dramatically, but our ability to meet people face-to-face hasn’t gotten any easier,” he said. “We want eShadow to close social gaps and connect people in meaningful ways, while keeping the technology non-intrusive and protecting privacy.”

The name eShadow comes from the idea that users input their interests into the software, and their smartphone broadcasts those interests to certain other users of the software – but only within 50 yards of the phone. So as users move, the broadcast follows them around like a shadow.

As to users’ safety, Xuan feels that, at least for some situations, meeting someone in person is safer than meeting them online.

“Online, people can steal others’ identity, or lie easily without detection. It’s much harder to pull off a masquerade in person,” he said.

Plus, users only share information which they want to share, and can observe potential friends at a distance before deciding whether to introduce themselves. Young people, Xuan pointed out, are especially comfortable with putting personal information online, and could readily adapt to using the software.

That said, people can be selective about who they wish to receive their eShadow signals. Users can select individuals from their phone’s contact list, and specifically de-select people as well.

“Say I’m from Ohio State, and someone else is from the University of Michigan, so I don’t want to talk to them. I just tell the software to ignore anyone who says they’re from Michigan,” Xuan laughed.

The researchers’ biggest challenges concerned efficient use of wireless communication, explained doctoral student Jin Teng. He and his colleagues wrote algorithms that let smartphones send and receive eShadow signals quickly, but without overwhelming a network.

In outdoor tests on the Ohio State campus, they measured how fast the software could detect users who were 20, 30, and 50 yards apart. They tested different numbers of users, from two to seven.

In all cases, the software was able to connect people within about half a minute – an average of 25 seconds for two users, and 35 seconds for seven.

Xuan noted that eShadow’s algorithms could be useful beyond socializing. Soldiers could use something akin to eShadow to locate each other on the battlefield.

Presently, the software works best when people move infrequently. Xuan and his research group are enhancing it to better accommodate motion. They are also extending it from Windows Mobile to support multiple smartphone platforms such as Android, and exploring opportunities for publicly releasing the software in the near future.

Other engineers on Xuan’s team include Xiaole Bai, an assistant professor of computer and information science at the University of Massachusetts at Dartmouth, and Boying Zhang, Xinfeng Li, and Adam C. Champion, all doctoral students at Ohio State.

This research was funded by Xuan’s National Science Foundation (NSF) CAREER award, an NSF Computer and Network Systems grant, and an Army Research Office grant.

Contact: Dong Xuan, (614) 292-2958; Xuan.3@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

[Editor’s note: Xuan is traveling internationally until July 20, and is best reached by email or through Pam Frost Gorder.]

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>