Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘SMART’ quality control system cuts risk of human error on assembly lines

16.12.2008
Artificial intelligence has been used in a EUREKA-backed project to develop a quality control system that greatly reduces the risk of human error on assembly lines.

The four teams who worked on Project E!3450-QSPAI have achieved a non-contact activation program that commands and monitors laser-scanning for precise panel measurement, and triangulation methods for positioning components.

Although existing technologies, notably in computing and lasers, have been used, it is their integration that makes this control system unique.

The project was instigated and led by Trimo d.d., a specialist engineer and producer of prefabricated steel buildings and components, based at Trebnje, some 50 km south-west of Ljubljana. The other partners were two faculties of the University of Ljubljana – Computer and Information Science, and Electrical Engineering – and the Institut fuer Sandwichtechnik, of Mainz, Germany.

The challenge
Trimo wanted greater quality control during its manufacture of Trimoterm lightweight, fireproof sandwich-panels as the process was prone to delays and other glitches, including human actions, which impact on product quality.

Operators were unable to monitor continuously each of the many production steps; neither could they predict all the indirect consequences of actions performed on the line. And manual inspection could miss such faults as measurement errors, and colour deviations between batches.

The main concern was the long reaction time in correcting errors. As destructive and discrete analysis of sample panels was practical only a few times each day, faulty panels could go unnoticed until arrival at the construction site, or, worse, after application.

The achievement
The project task teams have created a system that achieves control of disparate parameters, ranging from the type and quality of input materials to the settings and current state of the assembly line. The unified system governs both the speed of production, and, even more importantly, the individual processes that take place on the line.

One of the first development tasks was to write a program for artificial intelligence (AI) – advanced data processing – that could “learn” the manufacturing process by “mining” the records of assembly line parameters. AI proved its value in detecting errors, discovering correlations between parameters, and indicating areas where the process could be improved.

Initial monitoring of the process identified numerous reasons for delays. These reasons fell into three basic categories: organizational demands, processing errors, and inappropriate quality of material. Organisational delays could occur when equipment was re-set for different types of product, during the changeover to other components, and even in the scheduling of workers' rest breaks. Production delays included breakdowns of mechanical equipment, poor line control, and process errors. The human factor proved especially difficult to determine as actions could have indirect influences.

Results and outlook
A prototype system – which was installed without disrupting the factory’s production schedule – is running successfully, but without the AI program. Although AI was central to the initial phase of development, the reliability of the learning algorithms (instruction sequences) needs to be improved, especially concerning the measurement of input material, and the speed of gathering information.

The present system, however, is providing a high degree of control, resulting in a significant increase in productivity with fewer rejects. Viktor Zaletelj, the QSPAI Project Manager at Trimo, says that feedback from continuous monitoring of the entire process enables operators to correct faults almost as soon as they develop, and even to spot potential problems.

“These results have encouraged the participants to continue developing the AI program so that it can be interfaced with the control system’s measurement and data processing capabilities. It is feasible that we can fulfil our original intent to build a system that mostly relies on ‘machine learning’ to maintain quality.”

Shar McKenzie | alfa
Further information:
http://www.eureka.be/qspai

More articles from Information Technology:

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>