Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘SMART’ quality control system cuts risk of human error on assembly lines

16.12.2008
Artificial intelligence has been used in a EUREKA-backed project to develop a quality control system that greatly reduces the risk of human error on assembly lines.

The four teams who worked on Project E!3450-QSPAI have achieved a non-contact activation program that commands and monitors laser-scanning for precise panel measurement, and triangulation methods for positioning components.

Although existing technologies, notably in computing and lasers, have been used, it is their integration that makes this control system unique.

The project was instigated and led by Trimo d.d., a specialist engineer and producer of prefabricated steel buildings and components, based at Trebnje, some 50 km south-west of Ljubljana. The other partners were two faculties of the University of Ljubljana – Computer and Information Science, and Electrical Engineering – and the Institut fuer Sandwichtechnik, of Mainz, Germany.

The challenge
Trimo wanted greater quality control during its manufacture of Trimoterm lightweight, fireproof sandwich-panels as the process was prone to delays and other glitches, including human actions, which impact on product quality.

Operators were unable to monitor continuously each of the many production steps; neither could they predict all the indirect consequences of actions performed on the line. And manual inspection could miss such faults as measurement errors, and colour deviations between batches.

The main concern was the long reaction time in correcting errors. As destructive and discrete analysis of sample panels was practical only a few times each day, faulty panels could go unnoticed until arrival at the construction site, or, worse, after application.

The achievement
The project task teams have created a system that achieves control of disparate parameters, ranging from the type and quality of input materials to the settings and current state of the assembly line. The unified system governs both the speed of production, and, even more importantly, the individual processes that take place on the line.

One of the first development tasks was to write a program for artificial intelligence (AI) – advanced data processing – that could “learn” the manufacturing process by “mining” the records of assembly line parameters. AI proved its value in detecting errors, discovering correlations between parameters, and indicating areas where the process could be improved.

Initial monitoring of the process identified numerous reasons for delays. These reasons fell into three basic categories: organizational demands, processing errors, and inappropriate quality of material. Organisational delays could occur when equipment was re-set for different types of product, during the changeover to other components, and even in the scheduling of workers' rest breaks. Production delays included breakdowns of mechanical equipment, poor line control, and process errors. The human factor proved especially difficult to determine as actions could have indirect influences.

Results and outlook
A prototype system – which was installed without disrupting the factory’s production schedule – is running successfully, but without the AI program. Although AI was central to the initial phase of development, the reliability of the learning algorithms (instruction sequences) needs to be improved, especially concerning the measurement of input material, and the speed of gathering information.

The present system, however, is providing a high degree of control, resulting in a significant increase in productivity with fewer rejects. Viktor Zaletelj, the QSPAI Project Manager at Trimo, says that feedback from continuous monitoring of the entire process enables operators to correct faults almost as soon as they develop, and even to spot potential problems.

“These results have encouraged the participants to continue developing the AI program so that it can be interfaced with the control system’s measurement and data processing capabilities. It is feasible that we can fulfil our original intent to build a system that mostly relies on ‘machine learning’ to maintain quality.”

Shar McKenzie | alfa
Further information:
http://www.eureka.be/qspai

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>