Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart little gizmo even smarter

07.07.2010
With the help of smart RFID technology, things, animals, and people can be identified remotely, and the information can be sent and stored in databases. Now the method will be even smarter thanks to research Björn Nilsson at Halmstad University in Sweden, who is presenting solutions that make this technology more effective and more energy efficient. In fact, as much as 60 percent more efficient.

RFID stands for "Radio Frequency Identification" and is about identifying something remotely with the help of wireless technology. A product is provided with a tag – or a label – which in turn has a unique identity number. When a tag passes a reader, the tag is read, and the number is registered.

RFID tags are found on masses of items in a great number of different areas where someone wants to trace, identify, and store information. Business like logistics, transportation, and animal husbandry can be made considerably more efficient with the aid of more modern tags.

Thanks to Björn Nilsson’s research, there is now a solution that makes the technology even more effective and, what’s more, more energy efficient. He has developed a protocol, that is, rules for communication between readers and tags, for so-called active RFID tags that entail that the use of energy is reduced and batteries last longer. This means that it is now possible to produce simpler and thereby cheaper tags.

Today’s active tags have been relatively limited since they have been energy-consuming and expensive to produce. There is a great demand for more energy-efficient tags with longer lives. But there’s another snag. If multiple tags pass a reader at the same time, it might be that all tags are not read then and there.

“This is what it’s all about. They can’t ‘interrupt’ each other. The talk needs to be organized. You also want the tags to use as little energy as possible. This is what my research is about: how readers and multiple tags talk to each other at the same time, effectively and without causing confusion,” explains Björn Nilsson.

The next step is to develop an active tag with a single circuit. Björn Nilsson is already working on this. Together with his colleague Emil Nilsson at Halmstad University, he is running a project where Björn’s job is to see to it that readers and tags communicate with each other, while Emil is developing the electronics to make it all more efficient.

Early this summer Björn Nilsson, together with his thesis director at Chalmers University of Technology, Lars Bengtsson, and his colleague Emil Nilsson at Halmstad University, presented this research at one of the world’s largest RFID conferences in China. Their paper was selected as one of the eight best at the conference in China.

“We’re very competitive in this field at Halmstad University,” says Björn Nilsson.

The dissertation is titled Energy Efficient Protocols for Active RFID and was submitted to Chalmers in June. The research work was carried out at Halmstad University and the company Free2Move.

Contact with Björn Nilsson: bjorn.nilsson@hh.se

Lena Lundén | idw
Further information:
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=120356

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>