Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sky light sky bright - in the office

02.01.2012
Working under the open sky – it sounds enticing, but it’s seldom really a practical option. Now, a dynamic luminous ceiling brings the sky into office spaces by creating the effect of passing clouds. This kind of lighting generates a pleasant working environment.

As the wind swiftly blows clouds across the sky, the light is in a constant state of change. The feeling of spaciousness and freedom we experience outdoors is exactly what researchers from the Stuttgart-based Fraunhofer Institute for Industrial Engineering IAO replicate indoors: a luminous ceiling that extends across the entire room simulates lighting conditions which resemble those produced by passing clouds – conveying the impression that you are sitting outdoors.

The innovative luminous ceiling, which was developed by the Fraunhofer researchers in close collaboration with their partners at LEiDs GmbH, consists of 50cm by 50cm tiles. “Each tile comprises an LED board with 288 light emitting diodes (LEDs),” states Dr. Matthias Bues, head of department at the IAO. “The board is mounted on the ceiling. A diffuser film in matt white is attached approximately 30cm beneath the LEDs and ensures that the individual points of light are not perceived as such. This diffuser film creates homogenous lighting that illuminates the room throughout.” The researchers use a combination of red, blue, green and white LEDs in order to produce the full light spectrum. This combination makes it possible to generate more than 16 million hues. What’s more, the white LEDs are more energy efficient than the colored lights, which keeps the energy costs to a minimum.

The main focus in developing the virtual sky was to simulate natural lighting conditions on a cloudy day. To achieve this goal, the researchers carefully examined natural light to find out how – and how quickly – the light spectrum changes when clouds move across the sky. “The LEDs allow us to simulate these dynamic changes in lighting in a way that is not directly obvious to the naked eye. Otherwise the lighting might distract people from their work. But it does need to fluctuate enough to promote concentration and heighten alertness,” says Bues. The results of a preliminary study indicate that users find this dynamic lighting to be extremely pleasant. The study involved ten volunteers who carried out their daily work over the course of four days under these lighting conditions with a lighting surface of 30cm by 60cm. Throughout the first day, the lighting remained static. On the second day, it fluctuated gently, and on the third day the fluctuations were rapid. On the fourth day, the participants could choose which type of lighting they wanted, and 80 percent opted for the fast, dynamic lighting.

A prototype of this virtual sky has now been developed that contains a total of 34,560 LEDs spanning an area of 34 square meters. At full power, the “sky” lights up with an intensity of more than 3,000 lux, but 500 to 1,000 lux is sufficient to create a comfortable level of lighting.

From March 6 -10, 2012 at the CeBIT trade fair in Hannover, the researchers will be exhibiting a 2.8m by 2.8m virtual sky at the joint Fraunhofer booth in Hall 9, Booth E 02. Initial inquiries regarding the new lighting have already come in, mainly for use in conference rooms. The virtual sky currently costs approximately 1,000 euros per square meter, but this price will come down, since the more units are produced, the more cost-effective each luminous ceiling will be.

Dr.-Ing. Matthias Bues | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/sky-light-sky-bright.html

Further reports about: IAO LED full light spectrum lighting conditions luminous ceiling

More articles from Information Technology:

nachricht Researchers illuminate the path to a new era of microelectronics
23.04.2018 | Boston University College of Engineering

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>