Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Simulations lead to design of near-frictionless material


Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been observed before.

In this schematic of the superlubricity system, the gold represents nanodiamond particles; the blue is a graphene nanoscroll; green shows underlying graphene on silicon dioxide; and the black structures are the diamond-like carbon interface.

Credit: Sanket Deshmukh, Joseph Insley, and Subramanian Sankaranarayanan, Argonne National Laboratory

"I remember Sanket calling me and saying 'you have got to come over here and see this. I want to show you something really cool,'" said Subramanian Sankaranarayanan, Argonne computational nanoscientist, who led the simulation work at the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility.

They were amazed by what the computer simulations revealed. When the lubricant materials--graphene and diamond-like carbon (DLC)--slid against each other, the graphene began rolling up to form hollow cylindrical "scrolls" that helped to practically eliminate friction. These so-called nanoscrolls represented a completely new mechanism for superlubricity, a state in which friction essentially disappears.

"The nanoscrolls combat friction in very much the same way that ball bearings do by creating separation between surfaces," said Deshmukh, who finished his postdoctoral appointment at Argonne in January.

Superlubricity is a highly desirable property. Considering that nearly one-third of every fuel tank is spent overcoming friction in automobiles, a material that can achieve superlubricity would greatly benefit industry and consumers alike. Such materials could also help increase the lifetime of countless mechanical components that wear down due to incessant friction.

Experimental origins

Prior to the computational work, Argonne scientists Ali Erdemir, Anirudha Sumant, and Diana Berman were studying the hybrid material in laboratory experiments at Argonne's Tribology Laboratory and the Center for Nanoscale Materials, a DOE Office of Science User Facility. The experimental setup consisted of small patches of graphene (a two-dimensional single-sheet form of pure carbon) sliding against a DLC-coated steel ball.

The graphene-DLC combination was registering a very low friction coefficient (a ratio that measures the force of friction between two surfaces), but the friction levels were fluctuating up and down for no apparent reason. The experimentalists were also puzzled to find that humid environments were causing the friction coefficient to shoot up to levels that were nearly 100 times greater than measured in dry environments.

To shed light on these mysterious behaviors, they turned to Sankaranarayanan and Deshmukh for computational help. Using Mira, the ALCF's 10-petaflops IBM Blue Gene/Q supercomputer, the researchers replicated the experimental conditions with large-scale molecular dynamics simulations aimed at understanding the underlying mechanisms of superlubricity at an atomistic level.

This led to their discovery of the graphene nanoscrolls, which helped to fill in the blanks. The material's fluctuating friction levels were explained by the fact that the nanoscrolls themselves were not stable. The researchers observed a repeating pattern in which the hollow nanoscrolls would form, and then cave in and collapse under the pressure of the load.

"The friction was dipping to very low values at the moment the scroll formation took place and then it would jump back up to higher values when the graphene patches were in an unscrolled state," Deshmukh said.

The computational scientists had an idea to overcome this issue. They tried incorporating nanodiamond particles into their simulations to see if the hard material could help stabilize the nanoscrolls and make them more permanent.

Sure enough, the simulations proved successful. The graphene patches spontaneously rolled around the nanodiamonds, which held the scrolls in place and resulted in sustained superlubricity. The simulation results fed into a new set of experiments with nanodiamonds that confirmed the same.

"The beauty of this particular discovery is that we were able to see sustained superlubricity at the macroscale for the first time, proving this mechanism can be used at engineering scales for real-world applications," Sankaranarayanan said. "This collaborative effort is a perfect example of how computation can help in the design and discovery of new materials."

Not slippery when wet

Unfortunately, the addition of nanodiamonds did not address the material's aversion to water. The simulations showed that water suppresses the formation of scrolls by increasing the adhesion of graphene to the surface.

While this greatly limits the hybrid material's potential applications, its ability to maintain superlubricity in dry environments is a significant breakthrough in itself.

The research team is in the process of seeking a patent for the hybrid material, which could potentially be used for applications in dry environments, such as computer hard drives, wind turbine gears, and mechanical rotating seals for microelectromechanical and nanoelectromechanical systems.

Adding to the material's appeal is a relatively simple and cost-effective deposition method called drop casting. This technique involves spraying solutions of the materials on moving mechanical parts. When the solutions evaporate, it would leave the graphene and nanodiamonds on one side of a moving part, and diamond-like carbon on the other side.

However, the knowledge gained from their study is perhaps even more valuable, said Deshmukh. He expects the nanoscroll mechanism to spur future efforts to develop materials capable of superlubricity for a wide range of mechanical applications.

For their part, the Argonne team will continue its computational studies to look for ways to overcome the barrier presented by water.

"We are exploring different surface functionalizations to see if we can incorporate something hydrophobic that would keep water out," Sankaranarayanan said. "As long as you can repel water, the graphene nanoscrolls could potentially work in humid environments as well."

Simulating millions of atoms

The team's groundbreaking nanoscroll discovery would not have been possible without a supercomputer like Mira. Replicating the experimental setup required simulating up to 1.2 million atoms for dry environments and up to 10 million atoms for humid environments.

The researchers used the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) code to carry out the computationally demanding reactive molecular dynamics simulations.

With the help of ALCF catalysts, a team of computational scientists who work directly with ALCF users, they were able to overcome a performance bottleneck with the code's ReaxFF module, an add-on package that was needed to model the chemical reactions occurring in the system.

The ALCF catalysts, in collaboration with researchers from IBM, Lawrence Berkeley National Laboratory, and Sandia National Laboratories, optimized LAMMPS and its implementation of ReaxFF by adding OpenMP threading, replacing MPI point-to-point communication with MPI collectives in key algorithms, and leveraging MPI I/O. Altogether, these enhancements allowed the code to perform twice as fast as before.

"With the code optimizations in place, we were able to model the phenomena in real experimental systems more accurately," Deshmukh said. "The simulations on Mira showed us some amazing things that could not be seen in laboratory tests."

And with the recent announcement of Aurora, the ALCF's next-generation supercomputer, Sankaranarayanan is excited about where this line of research could go in the future.

"Given the advent of computing resources like Aurora and the wide gamut of the available two-dimensional materials and nanoparticle types, we envision the creation of a lubricant genome at some point in the future," he said. "Having a materials database like this would allow us to pick and choose lubricant materials for specific operational conditions."


The researchers recently published their findings from this project in a Science paper entitled "Macroscale superlubricity enabled by graphene nanoscroll formation." Their work was funded by the DOE Office of Science. Computing time at the ALCF was allocated through DOE's Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

Contributors to the code optimization work include Nichols A. Romero, Wei Jiang, and Chris Knight from the ALCF; Paul Coffman from IBM; Hasan Metin Aktulga from Lawrence Berkeley National Laboratory (now at Michigan State University); and Tzu-Ray Shan from Sandia National Laboratories.

Media Contact

Brian Grabowski


Brian Grabowski | EurekAlert!

Further reports about: MPI Simulations friction graphene humid environments lubricant material nanodiamonds

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>



Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

More VideoLinks >>>