Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant progress in intelligent radio-over-fiber (I-ROF) systems

29.11.2012
Driven by the strong demand for high-definition video, digital health services, the Internet of Things, and virtual reality, broadband, ubiquitous and convergent information access has become the most important engine to drive the development of the modern information society.

With increasing numbers of information-based interactions among humans, machines and objects, especially as new services, new terminals and new needs emerge, the networks are required to provide flexible, energy-efficient, safe and broadband access services anywhere at any time, and therefore wideband and ubiquitous information access has become the great demand of the modern information society.

However, it is difficult to meet the growing demand with the existing technologies, so new solutions must be explored as a matter of urgency. The intelligent radio-over-fiber (I-ROF) system, which combines the advantages of flexible wireless access and fiber-optic broadband transmission, uses the methods of microwave photonics to realize the generation of multi-band, multi-standard microwave signals in the optical domain, along with broadband processing, large dynamic transmission, fast access and reconfigurable networking, and can thus provide an effective way to achieve broadband and ubiquitous access.

With the support of the National Program for Key Basic Research Project of China (973 Program, Grant No. 2012CB315705) and the National High-Tech R&D Program of China (863 Program, Grant No. 2011AA010306), a research group led by Professor Ji YueFeng, who is with Beijing University of Posts and Telecommunications and who is also the Chief Scientist of the National 973 Program, have focused on I-ROF systems and have studied the fundamental principles, network architecture and enabling technologies of I-ROF systems from the viewpoints of the required modules, system applications and networking. Also, a broadband access and ubiquitous sensing oriented, large dynamic, reconfigurable, and distributed I-ROF system experimental platform has been built to realize broadband wireless access applications. The group's work, entitled "Large dynamic, reconfigurable, distributed intelligent radio-over-fiber (I-ROF) system", was published in SCIENCE CHINA Information Sciences, 2012, vol. 42 (10).

The research group focused on the large demand for broadband access and for ubiquitous sensing for the Internet of Things and other applications, and proposed a large dynamic and reconfigurable distributed I-ROF system, which can meet this great demand. Also, the fundamental principles, network architecture and enabling technologies for these I-ROF systems in terms of modules, system applications and networking have also been studied. From the viewpoint of the modules, broadband and multi-standard microwave/millimeter-wave band vector signal generation, instantaneous photonic microwave frequency measurements, broadband and tunable microwave photonic filters based on photonic crystals, and broadband, high efficiency electromagnetic band gap structured antennas were investigated. For system applications, a large dynamic ROF system, a cognitive, collaborative and power efficient ROF system, and an optical and wireless resources joint management I-ROF system were covered. For networking, the network architecture of the I-ROF and the media access control (MAC) protocol for the distributed ROF network were studied. Based on the results of these studies, a broadband access and ubiquitous sensing oriented, large dynamic, reconfigurable, and distributed I-ROF system experimental platform was built to realize broadband processing of multi-band, multi-standard microwave signals in the optical domain, large-scale dynamic transmission and reconfigurable networking.

This new generation of I-ROF systems is typically representative of microwave photonics, which is broadband and oriented toward ubiquitous information access, and has the advantages of broadband operation over the full frequency band, a reconfigurable architecture and easy scalability. It also allows low operational energy consumption. I-ROF is therefore an appropriate direction for future development and has broad application prospects.

See the article: Ji Y. F., Xu K., Tian H. P., Wang H. X. Large dynamic, reconfigurable, distributed intelligent radio-over-fiber (I-ROF) system [J]. Scientia Sinica Informationis, 2012, 42(10): 1204-1216.

Yan Bei | EurekAlert!
Further information:
http://www.scichina.org

More articles from Information Technology:

nachricht World first demo of labyrinth magnetic-domain-optical Q-switched laser
28.07.2016 | Toyohashi University of Technology

nachricht New movie screen allows for glasses-free 3-D
26.07.2016 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>