Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant progress in intelligent radio-over-fiber (I-ROF) systems

29.11.2012
Driven by the strong demand for high-definition video, digital health services, the Internet of Things, and virtual reality, broadband, ubiquitous and convergent information access has become the most important engine to drive the development of the modern information society.

With increasing numbers of information-based interactions among humans, machines and objects, especially as new services, new terminals and new needs emerge, the networks are required to provide flexible, energy-efficient, safe and broadband access services anywhere at any time, and therefore wideband and ubiquitous information access has become the great demand of the modern information society.

However, it is difficult to meet the growing demand with the existing technologies, so new solutions must be explored as a matter of urgency. The intelligent radio-over-fiber (I-ROF) system, which combines the advantages of flexible wireless access and fiber-optic broadband transmission, uses the methods of microwave photonics to realize the generation of multi-band, multi-standard microwave signals in the optical domain, along with broadband processing, large dynamic transmission, fast access and reconfigurable networking, and can thus provide an effective way to achieve broadband and ubiquitous access.

With the support of the National Program for Key Basic Research Project of China (973 Program, Grant No. 2012CB315705) and the National High-Tech R&D Program of China (863 Program, Grant No. 2011AA010306), a research group led by Professor Ji YueFeng, who is with Beijing University of Posts and Telecommunications and who is also the Chief Scientist of the National 973 Program, have focused on I-ROF systems and have studied the fundamental principles, network architecture and enabling technologies of I-ROF systems from the viewpoints of the required modules, system applications and networking. Also, a broadband access and ubiquitous sensing oriented, large dynamic, reconfigurable, and distributed I-ROF system experimental platform has been built to realize broadband wireless access applications. The group's work, entitled "Large dynamic, reconfigurable, distributed intelligent radio-over-fiber (I-ROF) system", was published in SCIENCE CHINA Information Sciences, 2012, vol. 42 (10).

The research group focused on the large demand for broadband access and for ubiquitous sensing for the Internet of Things and other applications, and proposed a large dynamic and reconfigurable distributed I-ROF system, which can meet this great demand. Also, the fundamental principles, network architecture and enabling technologies for these I-ROF systems in terms of modules, system applications and networking have also been studied. From the viewpoint of the modules, broadband and multi-standard microwave/millimeter-wave band vector signal generation, instantaneous photonic microwave frequency measurements, broadband and tunable microwave photonic filters based on photonic crystals, and broadband, high efficiency electromagnetic band gap structured antennas were investigated. For system applications, a large dynamic ROF system, a cognitive, collaborative and power efficient ROF system, and an optical and wireless resources joint management I-ROF system were covered. For networking, the network architecture of the I-ROF and the media access control (MAC) protocol for the distributed ROF network were studied. Based on the results of these studies, a broadband access and ubiquitous sensing oriented, large dynamic, reconfigurable, and distributed I-ROF system experimental platform was built to realize broadband processing of multi-band, multi-standard microwave signals in the optical domain, large-scale dynamic transmission and reconfigurable networking.

This new generation of I-ROF systems is typically representative of microwave photonics, which is broadband and oriented toward ubiquitous information access, and has the advantages of broadband operation over the full frequency band, a reconfigurable architecture and easy scalability. It also allows low operational energy consumption. I-ROF is therefore an appropriate direction for future development and has broad application prospects.

See the article: Ji Y. F., Xu K., Tian H. P., Wang H. X. Large dynamic, reconfigurable, distributed intelligent radio-over-fiber (I-ROF) system [J]. Scientia Sinica Informationis, 2012, 42(10): 1204-1216.

Yan Bei | EurekAlert!
Further information:
http://www.scichina.org

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>