Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Significant progress in intelligent radio-over-fiber (I-ROF) systems

Driven by the strong demand for high-definition video, digital health services, the Internet of Things, and virtual reality, broadband, ubiquitous and convergent information access has become the most important engine to drive the development of the modern information society.

With increasing numbers of information-based interactions among humans, machines and objects, especially as new services, new terminals and new needs emerge, the networks are required to provide flexible, energy-efficient, safe and broadband access services anywhere at any time, and therefore wideband and ubiquitous information access has become the great demand of the modern information society.

However, it is difficult to meet the growing demand with the existing technologies, so new solutions must be explored as a matter of urgency. The intelligent radio-over-fiber (I-ROF) system, which combines the advantages of flexible wireless access and fiber-optic broadband transmission, uses the methods of microwave photonics to realize the generation of multi-band, multi-standard microwave signals in the optical domain, along with broadband processing, large dynamic transmission, fast access and reconfigurable networking, and can thus provide an effective way to achieve broadband and ubiquitous access.

With the support of the National Program for Key Basic Research Project of China (973 Program, Grant No. 2012CB315705) and the National High-Tech R&D Program of China (863 Program, Grant No. 2011AA010306), a research group led by Professor Ji YueFeng, who is with Beijing University of Posts and Telecommunications and who is also the Chief Scientist of the National 973 Program, have focused on I-ROF systems and have studied the fundamental principles, network architecture and enabling technologies of I-ROF systems from the viewpoints of the required modules, system applications and networking. Also, a broadband access and ubiquitous sensing oriented, large dynamic, reconfigurable, and distributed I-ROF system experimental platform has been built to realize broadband wireless access applications. The group's work, entitled "Large dynamic, reconfigurable, distributed intelligent radio-over-fiber (I-ROF) system", was published in SCIENCE CHINA Information Sciences, 2012, vol. 42 (10).

The research group focused on the large demand for broadband access and for ubiquitous sensing for the Internet of Things and other applications, and proposed a large dynamic and reconfigurable distributed I-ROF system, which can meet this great demand. Also, the fundamental principles, network architecture and enabling technologies for these I-ROF systems in terms of modules, system applications and networking have also been studied. From the viewpoint of the modules, broadband and multi-standard microwave/millimeter-wave band vector signal generation, instantaneous photonic microwave frequency measurements, broadband and tunable microwave photonic filters based on photonic crystals, and broadband, high efficiency electromagnetic band gap structured antennas were investigated. For system applications, a large dynamic ROF system, a cognitive, collaborative and power efficient ROF system, and an optical and wireless resources joint management I-ROF system were covered. For networking, the network architecture of the I-ROF and the media access control (MAC) protocol for the distributed ROF network were studied. Based on the results of these studies, a broadband access and ubiquitous sensing oriented, large dynamic, reconfigurable, and distributed I-ROF system experimental platform was built to realize broadband processing of multi-band, multi-standard microwave signals in the optical domain, large-scale dynamic transmission and reconfigurable networking.

This new generation of I-ROF systems is typically representative of microwave photonics, which is broadband and oriented toward ubiquitous information access, and has the advantages of broadband operation over the full frequency band, a reconfigurable architecture and easy scalability. It also allows low operational energy consumption. I-ROF is therefore an appropriate direction for future development and has broad application prospects.

See the article: Ji Y. F., Xu K., Tian H. P., Wang H. X. Large dynamic, reconfigurable, distributed intelligent radio-over-fiber (I-ROF) system [J]. Scientia Sinica Informationis, 2012, 42(10): 1204-1216.

Yan Bei | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Worldwide glacier information system to go
30.11.2015 | Universität Zürich

nachricht Laser process simulation available as app for first time
23.11.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

UofL scientists identify critical pathway to improve muscle repair

01.12.2015 | Health and Medicine

IU chemists craft molecule that self-assembles into flower-shaped crystalline patterns

01.12.2015 | Life Sciences

Simulation shows key to building powerful magnetic fields

01.12.2015 | Physics and Astronomy

More VideoLinks >>>