Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signal processing: Look-up tables to shoulder the processing load

14.03.2013
Computing tasks for signal processing could be performed more quickly with less power by using look-up tables
Advanced mathematical algorithms are essential for processing electronic signals within computers and embedded processors. Scientists and engineers are constantly refining and redesigning their algorithms to obtain higher throughput of information on ever smaller devices that consume less power.

Now, Pramod Kumar Meher of the A*STAR Institute for Infocomm Research in Singapore and co-workers at Central South University in Changsha, China, have developed an efficient new method to implement an important step in signal processing, called the discrete cosine transform (DCT). Their method could lead to devices that occupy smaller areas, provide higher throughput of information, and consume less power than existing devices.

The DCT is commonly used for the compression of digital video and audio such as MPEG files. Similar to the better-known Fourier transform, the DCT involves expressing a series of data points as a sum of their product with cosine functions.

Several algorithms and software architectures already exist for computing so-called ‘power-of-two-length DCTs’. But, those DCTs are not suitable for all applications. The prime-length DCT is an alternative to the power-of-two-length DCT that has the potential to be more efficient for implementation in hardware, Meher notes.

Meher and his co-workers have focused on computing the DCT of different lengths of practical interest using specialized digital circuits that occupy less area on a silicon chip and use less power, but run at adequate speed. They not only derived a more efficient algorithm for DCT, but also derived new architecture—based on the ‘distributed arithmetic’ approach—for implementing the algorithm in integrated circuit chips.

Meher and co-workers made use of a theorem that inter-relates the transforms with cyclic convolution of two finite duration sequences. By using look-up tables, this convolution, and thereafter the prime-length DCT, could be performed quickly and accurately.

The team also described a new, efficient algorithm for decomposing the DCT—in mathematics, this means rewriting the problem in terms of a combination of simpler quantities. In addition to reducing the required size of read-only memory (ROM), the researchers found that overall their algorithm significantly reduced the computation time.

“We found that the proposed design involves significantly less area and it yields higher throughput with less power consumption than the corresponding existing designs,” says Meher. “The structure we propose is highly regular, modular and therefore suitable for Very Large Scale Integration realization.”

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Journal information

Xie, J., Meher, P. K. & He, J. Hardware-efficient realization of prime-length DCT based on distributed arithmetic. IEEE Transactions on Computers preprint, 6 March 2012 (doi: 10.1109/TC.2012.64).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>