Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signal control with light frequencies

12.03.2014

In a review article in Nature Photonics Ferenc Krausz and Mark Stockman discuss the prospects, recent experimental and theoretical findings open for the future of signal processing

Light waves have the potential to boost the efficiency of conventional electronics by a factor of 100,000.


In the future it might be possible, that electric currents (green) will be switched with the frequencies of light waves (up to the peta-hertz region) that are bouncing on a chip. (Graphic: Christian Hackenberger, MPQ, Attosecond division)

In a review article that appears in “Nature Photonics” on March 14th, Prof. Ferenc Krausz of the Laboratory for Attosecond Physics (LAP) at the Max-Planck-Institut für Quantenoptik and the Ludwig-Maximilians-Universität München and his co-author Prof. Mark Stockman of Georgia State University (GSU) in Atlanta describe how this vision may one day come true.

In their scenario, one would exploit the electric field of laser light to control the flow of electrons in dielectric materials, which, in turn, may modulate transmitted light and switch current in electronic circuits at light frequencies. Visible light oscillates at frequencies of about 10 to the 15 cycles per second, opening the possibility of switching light or electric current at rates in this range.

And since both signals can also carry information, innovative optoelectronic technologies would enable a corresponding increase in the speed of data processing, opening a new era in information technology. The authors review the novel tools and techniques of attosecond technology, which may play a crucial role in making the above advances actually happen.

Light is likely to become the tool of choice for controlling electric currents and data processing. After all, its electric field directs the behavior of electrons, which are the stuff of electric current and encode the information in our computer and communications networks. The ability to manipulate electrons with light would open up a new era by permitting switching rates of 10 to the 15 per second, for light waves oscillate at frequencies of that order.

But turning this vision into a reality will require essentially perfect control over the properties of light waves. In a new review article in Nature Photonics, Ferenc Krausz and his American colleague Mark Stockman (a specialist in solid-state physics) discuss their visionary concepts and point to possible ways of achieving this goal.

Their ideas are based on initial theoretical and experimental investigations which suggest that the oscillating electric field of light may switch electric current (doi:10.1038/nature11567) and modulate light (doi:10.1038/nature11720) flowing in and transmitted/reflected by solid-state devices, respectively (Nature, 3 January 2013).

This type of interaction between optical fields and electrons provides the technical basis for the field of attosecond physics, and has made it possible for the first time to observe the motions of electrons within atoms in real time, with the aid of attosecond light flashes. An attosecond is a billionth (10 to the minus 9) of a billionth of a second, in other words 10 to the 18 times shorter than a second. Moreover, one can precisely mold the shape of these attosecond flashes (i.e. how their intensity varies with time), provided one has exquisite control over the behavior of the lasers that produce them.

In their article, Krausz and Stockmann describe the techniques that have been developed to accomplish this feat. A more detailed history of attosecond physics is available on LAP’s homepage: http://www.attoworld.de/Mainpages/Attoworld/index.html#279).

The new issue of Nature Photonics also includes a report on the latest work done by Prof. Krausz and his team, in collaboration with Mark Stockman and Vadym Apalkov from GSU. They have shown that the current generated in an insulating material (silica) by the electric field of an intense and ultrashort laser pulse provides information about the precise waveform of the pulse that produced it (doi:10.1038/nphoton.2013.348, Nature Photonics, 14 March 2013). This finding represents the first step towards the realization of a detector that can visualize the shape of light waves, just as an oscilloscope “reproduces” microwaves.

This breakthrough means that attosecond technology is at least on course to extend the domain of electron metrology into the optical frequency range. Whether or not this will lead to a corresponding increase in signal processing rates remains an open question. “Our goal is to develop a chip that allows us to switch electric currents on and off at optical frequencies. This would increase rates of information processing by a factor of 100,000, and that is as fast as it gets.” The published experiments are still in the realm of basic research. But the scientists have begun to breach the limits of conventional electronics and photonics, thus opening the route to a far more efficient, light-based, electronics. Thorsten Naeser 

Original publications:

Ferenc Krausz und Mark I. Stockman
Attosecond metrology: from electron capture to future signal processing, Nature Photonics, 14 March 2014, doi:10.1038/nphoton.2014.28

Tim Paasch-Colberg et al.
Solid-state light-phase detector, Nature Photonics, 14 March 2014, doi:10.1038/nphoton.2013.348

Agustin Schiffrin et al.
Optical-field-induced current in dielectrics, Nature, 3 January 2013, doi:10.1038/nature11567

Martin Schultze et al.
Controlling dielectrics with the electric field of light, Nature, 3 January 2013, doi:10.1038/nature11720

For more information please contact:

Prof. Ferenc Krausz
Chair of Experimental Physics, Ludwig-Maximilians-Universität München
Laboratory for Attosecond Physics
Director at the Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -600
E-mail: ferenc.krausz@mpq.mpg.de

Thorsten Naeser
Munich-Centre for Advanced Photonics
Max-Planck-Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -124
E-mail: thorsten.naeser@mpq.mpg.de.de

Dr. Olivia Meyer-Streng
Max-Planck-Institute of Quantum Optics
Press & Public Relations
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Weitere Informationen:

http://www.attoworld.de/Mainpages/Attoworld/index.html#279

Dr. Olivia Meyer-Streng | Max-Planck-Institut

More articles from Information Technology:

nachricht Computing at the Speed of Light
22.05.2015 | University of Utah

nachricht NOAA's GOES-R satellite begins environmental testing
22.05.2015 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Analytical lamps monitor air pollution in cities

26.05.2015 | Ecology, The Environment and Conservation

DNA double helix does double duty in assembling arrays of nanoparticles

26.05.2015 | Life Sciences

Turn That Defect Upside Down

26.05.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>