Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signal control with light frequencies

12.03.2014

In a review article in Nature Photonics Ferenc Krausz and Mark Stockman discuss the prospects, recent experimental and theoretical findings open for the future of signal processing

Light waves have the potential to boost the efficiency of conventional electronics by a factor of 100,000.


In the future it might be possible, that electric currents (green) will be switched with the frequencies of light waves (up to the peta-hertz region) that are bouncing on a chip. (Graphic: Christian Hackenberger, MPQ, Attosecond division)

In a review article that appears in “Nature Photonics” on March 14th, Prof. Ferenc Krausz of the Laboratory for Attosecond Physics (LAP) at the Max-Planck-Institut für Quantenoptik and the Ludwig-Maximilians-Universität München and his co-author Prof. Mark Stockman of Georgia State University (GSU) in Atlanta describe how this vision may one day come true.

In their scenario, one would exploit the electric field of laser light to control the flow of electrons in dielectric materials, which, in turn, may modulate transmitted light and switch current in electronic circuits at light frequencies. Visible light oscillates at frequencies of about 10 to the 15 cycles per second, opening the possibility of switching light or electric current at rates in this range.

And since both signals can also carry information, innovative optoelectronic technologies would enable a corresponding increase in the speed of data processing, opening a new era in information technology. The authors review the novel tools and techniques of attosecond technology, which may play a crucial role in making the above advances actually happen.

Light is likely to become the tool of choice for controlling electric currents and data processing. After all, its electric field directs the behavior of electrons, which are the stuff of electric current and encode the information in our computer and communications networks. The ability to manipulate electrons with light would open up a new era by permitting switching rates of 10 to the 15 per second, for light waves oscillate at frequencies of that order.

But turning this vision into a reality will require essentially perfect control over the properties of light waves. In a new review article in Nature Photonics, Ferenc Krausz and his American colleague Mark Stockman (a specialist in solid-state physics) discuss their visionary concepts and point to possible ways of achieving this goal.

Their ideas are based on initial theoretical and experimental investigations which suggest that the oscillating electric field of light may switch electric current (doi:10.1038/nature11567) and modulate light (doi:10.1038/nature11720) flowing in and transmitted/reflected by solid-state devices, respectively (Nature, 3 January 2013).

This type of interaction between optical fields and electrons provides the technical basis for the field of attosecond physics, and has made it possible for the first time to observe the motions of electrons within atoms in real time, with the aid of attosecond light flashes. An attosecond is a billionth (10 to the minus 9) of a billionth of a second, in other words 10 to the 18 times shorter than a second. Moreover, one can precisely mold the shape of these attosecond flashes (i.e. how their intensity varies with time), provided one has exquisite control over the behavior of the lasers that produce them.

In their article, Krausz and Stockmann describe the techniques that have been developed to accomplish this feat. A more detailed history of attosecond physics is available on LAP’s homepage: http://www.attoworld.de/Mainpages/Attoworld/index.html#279).

The new issue of Nature Photonics also includes a report on the latest work done by Prof. Krausz and his team, in collaboration with Mark Stockman and Vadym Apalkov from GSU. They have shown that the current generated in an insulating material (silica) by the electric field of an intense and ultrashort laser pulse provides information about the precise waveform of the pulse that produced it (doi:10.1038/nphoton.2013.348, Nature Photonics, 14 March 2013). This finding represents the first step towards the realization of a detector that can visualize the shape of light waves, just as an oscilloscope “reproduces” microwaves.

This breakthrough means that attosecond technology is at least on course to extend the domain of electron metrology into the optical frequency range. Whether or not this will lead to a corresponding increase in signal processing rates remains an open question. “Our goal is to develop a chip that allows us to switch electric currents on and off at optical frequencies. This would increase rates of information processing by a factor of 100,000, and that is as fast as it gets.” The published experiments are still in the realm of basic research. But the scientists have begun to breach the limits of conventional electronics and photonics, thus opening the route to a far more efficient, light-based, electronics. Thorsten Naeser 

Original publications:

Ferenc Krausz und Mark I. Stockman
Attosecond metrology: from electron capture to future signal processing, Nature Photonics, 14 March 2014, doi:10.1038/nphoton.2014.28

Tim Paasch-Colberg et al.
Solid-state light-phase detector, Nature Photonics, 14 March 2014, doi:10.1038/nphoton.2013.348

Agustin Schiffrin et al.
Optical-field-induced current in dielectrics, Nature, 3 January 2013, doi:10.1038/nature11567

Martin Schultze et al.
Controlling dielectrics with the electric field of light, Nature, 3 January 2013, doi:10.1038/nature11720

For more information please contact:

Prof. Ferenc Krausz
Chair of Experimental Physics, Ludwig-Maximilians-Universität München
Laboratory for Attosecond Physics
Director at the Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -600
E-mail: ferenc.krausz@mpq.mpg.de

Thorsten Naeser
Munich-Centre for Advanced Photonics
Max-Planck-Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -124
E-mail: thorsten.naeser@mpq.mpg.de.de

Dr. Olivia Meyer-Streng
Max-Planck-Institute of Quantum Optics
Press & Public Relations
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Weitere Informationen:

http://www.attoworld.de/Mainpages/Attoworld/index.html#279

Dr. Olivia Meyer-Streng | Max-Planck-Institut

More articles from Information Technology:

nachricht Superfast fluorescence sets new speed record
27.07.2015 | Duke University

nachricht Two crystals are better than one
22.07.2015 | The Agency for Science, Technology and Research (A*STAR)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>