Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape-shifting mobile devices

29.04.2013
Prototype mobile devices that can change shape on-demand will be unveiled today [Monday 29 April] and could lay down the foundation for creating high shape resolution devices of the future.

The research paper, to be presented at one of the world's most important conferences on human-computer interfaces, will introduce the term 'shape resolution' and its ten features, to describe the resolution of an interactive device: in addition to display and touch resolution.

The research, led by Dr Anne Roudaut and Professor Sriram Subramanian, from the University of Bristol's Department of Computer Science, have used 'shape resolution' to compare the resolution of six prototypes the team have built using the latest technologies in shape changing material, such as shape memory alloy and electro active polymer.

One example of a device is the team's concept of Morphees, self-actuated flexible mobile devices that can change shape on-demand to better fit the many services they are likely to support.

The team believe Morphees will be the next generation of mobile devices, where users can download applications that embed a dedicated form factor, for instance the "stress ball app" that collapses the device in on itself or the "game app" that makes it adopt a console-like shape.

Dr Anne Roudaut, Research Assistant in the Department of Computer Science's Bristol Interaction and Graphics group, said: "The interesting thing about our work is that we are a step towards enabling our mobile devices to change shape on-demand. Imagine downloading a game application on the app-store and that the mobile phone would shape-shift into a console-like shape in order to help the device to be grasped properly. The device could also transform into a sphere to serve as a stress ball, or bend itself to hide the screen when a password is being typed so passers-by can't see private information."

By comparing the shape resolution of their prototypes, the researchers have created insights to help designers towards creating high shape resolution Morphees.

In the future the team hope to build higher shape resolution Morphees by investigating the flexibility of materials. They are also interested in exploring other kinds of deformations that the prototypes did not explore, such as porosity and stretchability.

A video of Morphees is available on YouTube at:
http://www.youtube.com/watch?v=oaZHj9SEzLQ
Paper: Morphees: Toward high "shape resolution" in self-actuated flexible mobile devices, Anne Roudaut, Abhijit Karnik, Sriram Subramanian, ACM CHI 2013, Saturday 27 April to Thursday 2 May 2013, Paris, France.

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk
http://www.youtube.com/watch?v=oaZHj9SEzLQ

More articles from Information Technology:

nachricht New technique controls autonomous vehicles on a dirt track
24.05.2016 | Georgia Institute of Technology

nachricht Engineers take first step toward flexible, wearable, tricorder-like device
24.05.2016 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>