Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sevenfold Accuracy Improvement for 3-D ‘Virtual Reality’ Labs

11.12.2008
Scientists at the National Institute of Standards and Technology (NIST) have developed software that improves the accuracy of the tracking devices in its immersive, or virtual, research environment by at least 700 percent.

The software can be used by scientists in other immersive environments with slight modifications for their individual laboratories. This advance is a step forward in transforming immersive technology that has traditionally been a qualitative tool into a scientific instrument with which precision measurements can be made.

Immersive environments such as NIST’s are typically made up of two or more 8 foot by 8 foot walls onto which images ranging from larger-than-life bodies or actual-size buildings can be displayed on the walls and the floors. The images are three-dimensional. Researchers wear 3-D glasses and hold a wand, each of whose location is tracked. Using these devices the researcher can walk around and interact with the virtual world with the help of the underlying graphics system.

While these small virtual reality laboratories have been around for more than a decade, they have mainly been used for a scientist to get inside a project and develop a feel of the object of study, explained NIST mathematician John Hagedorn. Researchers can walk inside hallways of newly designed buildings before they are constructed to ensure the proportions are correct, or inspect microscopic structures, for example.

The visuals in immersive environments are sometimes not quite accurate because of an inherent problem with the electromagnetic transmitters and receivers used to track where the user is in the space. Ferrous metals such as rebar in the walls, other metal in the room or metal walls, throw off the communications between the stationary and the small receivers attached to the tracked devices. These distortions are especially obvious when an image with lines or edges meets the virtual environment’s 90 degree angles where the walls and the floor meet. These distortions interfere with the “reality” aspect and limit the immersive environment’s value as a measurement tool.

To improve the image’s accuracy, Hagedorn and colleagues concentrated on the inaccuracy of the tracking devices. They knew there was a difference between where the tracking device said it was and where it really was. The researchers mapped two sets of data points—where they knew the sensors actually were and where the computer said they were. Using this data, they developed software that transforms the reported positions of the sensors into the actual position. “Our program,” Hagedorn said, “provides corrections of both the location and the orientation in the 3-D space.” Average location errors were reduced by a factor of 22; average orientation errors by a factor of 7.5.

“This improvement in motion tracking has furthered our goal of turning the immersive environment from a qualitative tool into a quantitative one—a sort of virtual laboratory,” Hagedorn explained. The first test with the new software was measuring a lattice structure with elements of about 2 to 3 millimeters in size designed to grow artificial skin replacements or bone. A 3-D image of the structure was constructed (see photo) using data obtained from a high-resolution microscope. NIST scientists interactively measured the diameters of the fibers and the spacing between the layers of fiber using the virtual lab. These precision measurements enabled the researchers to determine that the manufactured material substantially deviated from the design specification. On the other hand, additional measurements in the immersive environment showed that the angles between fibers in the manufactured material closely matched the design.

Evelyn Brown | Newswise Science News
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>