Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sevenfold Accuracy Improvement for 3-D ‘Virtual Reality’ Labs

11.12.2008
Scientists at the National Institute of Standards and Technology (NIST) have developed software that improves the accuracy of the tracking devices in its immersive, or virtual, research environment by at least 700 percent.

The software can be used by scientists in other immersive environments with slight modifications for their individual laboratories. This advance is a step forward in transforming immersive technology that has traditionally been a qualitative tool into a scientific instrument with which precision measurements can be made.

Immersive environments such as NIST’s are typically made up of two or more 8 foot by 8 foot walls onto which images ranging from larger-than-life bodies or actual-size buildings can be displayed on the walls and the floors. The images are three-dimensional. Researchers wear 3-D glasses and hold a wand, each of whose location is tracked. Using these devices the researcher can walk around and interact with the virtual world with the help of the underlying graphics system.

While these small virtual reality laboratories have been around for more than a decade, they have mainly been used for a scientist to get inside a project and develop a feel of the object of study, explained NIST mathematician John Hagedorn. Researchers can walk inside hallways of newly designed buildings before they are constructed to ensure the proportions are correct, or inspect microscopic structures, for example.

The visuals in immersive environments are sometimes not quite accurate because of an inherent problem with the electromagnetic transmitters and receivers used to track where the user is in the space. Ferrous metals such as rebar in the walls, other metal in the room or metal walls, throw off the communications between the stationary and the small receivers attached to the tracked devices. These distortions are especially obvious when an image with lines or edges meets the virtual environment’s 90 degree angles where the walls and the floor meet. These distortions interfere with the “reality” aspect and limit the immersive environment’s value as a measurement tool.

To improve the image’s accuracy, Hagedorn and colleagues concentrated on the inaccuracy of the tracking devices. They knew there was a difference between where the tracking device said it was and where it really was. The researchers mapped two sets of data points—where they knew the sensors actually were and where the computer said they were. Using this data, they developed software that transforms the reported positions of the sensors into the actual position. “Our program,” Hagedorn said, “provides corrections of both the location and the orientation in the 3-D space.” Average location errors were reduced by a factor of 22; average orientation errors by a factor of 7.5.

“This improvement in motion tracking has furthered our goal of turning the immersive environment from a qualitative tool into a quantitative one—a sort of virtual laboratory,” Hagedorn explained. The first test with the new software was measuring a lattice structure with elements of about 2 to 3 millimeters in size designed to grow artificial skin replacements or bone. A 3-D image of the structure was constructed (see photo) using data obtained from a high-resolution microscope. NIST scientists interactively measured the diameters of the fibers and the spacing between the layers of fiber using the virtual lab. These precision measurements enabled the researchers to determine that the manufactured material substantially deviated from the design specification. On the other hand, additional measurements in the immersive environment showed that the angles between fibers in the manufactured material closely matched the design.

Evelyn Brown | Newswise Science News
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>