Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor Warns Patients in Advance of Asthma Attack

24.01.2011
By analyzing patients’ breath, a new Siemens sensor can tell hours in advance if someone will get an asthma attack. The gas sensor registers if an asthma sufferer’s air passages are about to become inflamed, enabling the patient to take anti-inflammatory medication in time to prevent an attack.

The sensor measures amounts as small as one ppb (part per billion), making it as sensitive as larger devices that are far more expensive and not portable. One ppb corresponds approximately to the dilution of a cube of sugar in a 50 meter-long swimming pool. The new sensor is contained in a prototype device that will be portable and only a little larger than a cell phone.


In patients suffering from asthma, the latent inflammation of the bronchial tubes generally spreads long before the patients actually feel anything. If the inflammation is intense, the air passages constrict and the patient has an asthma attack. The attacks can be so serious that the patient has to be treated in hospital, which is why many asthma sufferers regularly take anti-inflammatory medication. Previously, the only way to detect impending asthma attacks in advance was to conduct expensive pulmonary examinations to determine if the patient’s breath contained heightened levels of nitrogen monoxide (NO), which signal such an attack. By contrast, the new sensor from Siemens Corporate Technology will enable patients to analyze the NO in their breath themselves. As a result, they will be able to take the minimum amount of preventive medication and increase the dose only if really necessary.

The new sensor can detect increases in NO one day before an acute asthma attack occurs. Over the past few years, medical researchers and health insurance companies have recognized that NO levels are an effective indication of an impending asthma attack. In the analysis of a patient’s breath, the system first converts nitrogen monoxide into nitrogen dioxide, after which the air flows across the actual sensor. Only the particles signaling the attack adhere to the sensor’s surface. This generates a voltage that is measured by a field-effect transistor. The intensity of the voltage is directly dependent on the amount of nitrogen monoxide in the patient’s breath. On the basis of this value, the patient can decide what dose of anti-inflammatory medication he or she should take.

Another type of breath sensor under consideration would allow athletes to check whether they are exercising enough to burn fat. The detection principle is the same, except that the system measures the level of acetone. The latter is generated in the body when fat is burned and is also detectable in a person’s breath.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>