Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semantic Search Engine Helps Scientists Do Productive Searches

13.01.2009
A new semantic web search engine developed at The University of Alabama in Huntsville is helping scientists who study the environment retrieve the research data they need, and has the potential to help researchers in other fields perform more focused and productive searches.

Almost everyone who has used a major internet search engine has had the same experience: Search for "Dodge convertible" and 0.16 seconds later you have 4.3 million links to web pages on dodge ball, Dodge City and convertible debt instruments.

Noesis, a new semantic web search engine developed at The University of Alabama in Huntsville, won’t help you find the perfect Charger ragtop, but it is helping scientists who study the environment retrieve the research data they need. It has the potential to help scientists and researchers in many other fields perform more focused and productive searches.

"This is the first semantic scientific search tool, the first time something like this has been used for science," said Dr. Rahul Ramachandran, a research scientist in UAHuntsville's Information Technology and Systems Center.

Noesis replaces the simple word-or-phrase matching search used by most search engines with a discipline-specific semantic "ontology," or knowledge base.

Using Noesis, for instance, an aquatic botantist searching for Mobile Bay sea grass might get a list of additional terms narrowing the search based on taxonomy, location or water type, while filtering out websites offering sea grass mats, oils and lotions that leave your skin silky smooth.

Both the terminology and the structure of relationships between terms in the ontology help Noesis narrow a search to items related to the specific field of study. The algorithm might not understand the difference between tropical cyclone and Iowa State Cyclone, but it will recognize that there is a difference.

"Building an ontology is not an insignificant task," Ramachandran said. "Usually you get the experts together, then they argue and decide what concepts and information to include, and how it is organized. Then we encode it so our system can take it and use it."

While it narrows the search terms, Noesis also broadens the search by adding datasets and scientific publications not routinely included in web searches.

"There are some things you have to configure for a particular domain, such as the specific journals and major data catalogues," said Ramachandran. "It gets complicated fast."

Even in scientific circles, the semantic search has advantages: "In some datasets they might refer to one set of readings as temperature while another site might use sea surface temperature or SST. With a normal search engine you would never see one if you search for the other. What we have is the ontology that does all of that matching for you."

While the first three projects using the Noesis system are all related to meteorology or environmental science, Ramachandran says the system can be adapted to any branch of science or research.

"Everything is the same except the ontology," he said. "It can be configured to different domains for different projects. The hope for the future is there will be a growth of these small ontologies."

Dr. Rahul Ramachandran | alfa
Further information:
http://www.uah.edu/

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>