Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic Leap: Computer to Allow Data Analysis Impossible Today

03.11.2010
Imagine a tool that is a cross between a powerful electron microscope and the Hubble Space Telescope, allowing scientists from disciplines ranging from medicine and genetics to astrophysics, environmental science, oceanography and bioinformatics to examine and analyze enormous amounts of data from both "little picture" and "big picture" perspectives.

Using a $2.1 million grant from the National Science Foundation, a group led by computer scientist and astrophysicist Alexander Szalay of Johns Hopkins' Institute for Data Intensive Engineering and Science is designing and developing such a tool, dubbed the Data-Scope.

Once built, the Data-Scope, which is actually a cluster of sophisticated computers capable of handling colossal sets of information, will enable the kind of data analysis tasks that simply are not otherwise possible today, said Szalay, the Alumni Centennial Professor in the Krieger School's Henry A. Rowland Department of Physics and Astronomy.

"Computer science has drastically changed the way we do science and the science that we do, and the Data-Scope is a crucial step in this process," Szalay said. "At this moment, the huge data sets are here, but we lack an integrated software and hardware infrastructure to analyze them. Data-Scope will bridge that gap."

Co-investigators on the Data-Scope project, all from Johns Hopkins, are Kenneth Church, chief scientist for the Human Language Technology Center of Excellence, a Department of Defense-funded center dedicated to advancing technology for the analysis of speech, text and document data; Andreas Terzis, associate professor in the Department of Computer Science at the Whiting School of Engineering; Sarah Wheelan, assistant professor of oncology bioinformatics in the School of Medicine; and Scott Zeger, professor of biostatistics in the Bloomberg School of Public Health and the university's vice provost for research.

Data-Scope will be able to handle 5 petabytes of data. That's the equivalent of 100 million four-drawer file cabinets filled with text. (Fifty petabytes would equal the entire written work of humankind, from the beginning of history until now, in all languages.)

The new apparatus will allow Szalay and a host of other Johns Hopkins researchers (not to mention those at other institutions, including universities and national laboratories such as Los Alamos in New Mexico and Oak Ridge in Tennessee) to conduct research directly in the database, which is where Szalay contends that more and more science is being done.

"The Data-Scope will allow us to mine out relationships among data that already exist, but that we can't yet handle, and to sift discoveries from what seems like an overwhelming flow of information," he said. "New discoveries will definitely emerge this way. There are relationships and patterns that we just cannot fathom buried in that onslaught of data. Data-Scope will tease these out."

According to Szalay, there are at least 20 research groups within Johns Hopkins that are grappling with data problems totaling 3 petabytes. (Three petabytes is equal to about 20 billion photos on Facebook.) Without Data-Scope, "they would have to wait years in order to analyze that amount of data," Szalay said.

The two-year NSF grant, to be supplemented with almost $1 million from Johns Hopkins, will underwrite the design and building of the new instrument and its first year of operation, expected to begin in May 2011. Szalay said that the range of material that the Data-Scope will handle will be "breathtakingly large, from genomics to ocean circulation, turbulence, astrophysics, environmental science, public health and beyond."

"There really is nothing like this at any university right now," Szalay said. "Such systems usually take many years to build up, but we are doing it much more quickly. It's similar to what Google is doing-of course on a thousand-times-larger scale than we are. This instrument will be the best in the academic world, bar none."

Zeger said he is excited about the research possibilities and collaborations that the new instrument will make possible.

"The NSF funding of a high-performance computing system, specially designed by Dr. Szalay and his team to solve large computational problems, will contribute to Johns Hopkins' remaining in the forefront of many areas, including biomedicine, where I work," he said. "The new genomic data are voluminous. Their analysis requires machines faster than are currently available. Dr. Szalay's machine will enable our biomedical and computational scientists to work together to solve problems that would have been beyond them otherwise."

Jonathan Bagger, vice provost for graduate and postdoctoral programs and special projects, said he believes that the Data-Scope positions Johns Hopkins to play a crucial role in the next revolution in science: data analysis.

"The Data-Scope is specially designed to bring large amounts of data literally under the microscope," he said. "By manipulating data in new ways, Johns Hopkins researchers will be able to advance their science in ways never before possible. I am excited that Johns Hopkins is in the forefront of this new field of inquiry: developing the calculus of the 21st century."

The instrument will be part of a new energy-efficient computing center that is being constructed in the basement of the Bloomberg Center for Physics and Astronomy on the Homewood campus. The house-sized room once served as a mission control center for the Far Ultraviolet Spectroscopic Explorer, a NASA satellite. This computing center is being built using a $1.3 million federal stimulus grant from the National Science Foundation.

Lisa De Nike | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>