Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic Leap: Computer to Allow Data Analysis Impossible Today

03.11.2010
Imagine a tool that is a cross between a powerful electron microscope and the Hubble Space Telescope, allowing scientists from disciplines ranging from medicine and genetics to astrophysics, environmental science, oceanography and bioinformatics to examine and analyze enormous amounts of data from both "little picture" and "big picture" perspectives.

Using a $2.1 million grant from the National Science Foundation, a group led by computer scientist and astrophysicist Alexander Szalay of Johns Hopkins' Institute for Data Intensive Engineering and Science is designing and developing such a tool, dubbed the Data-Scope.

Once built, the Data-Scope, which is actually a cluster of sophisticated computers capable of handling colossal sets of information, will enable the kind of data analysis tasks that simply are not otherwise possible today, said Szalay, the Alumni Centennial Professor in the Krieger School's Henry A. Rowland Department of Physics and Astronomy.

"Computer science has drastically changed the way we do science and the science that we do, and the Data-Scope is a crucial step in this process," Szalay said. "At this moment, the huge data sets are here, but we lack an integrated software and hardware infrastructure to analyze them. Data-Scope will bridge that gap."

Co-investigators on the Data-Scope project, all from Johns Hopkins, are Kenneth Church, chief scientist for the Human Language Technology Center of Excellence, a Department of Defense-funded center dedicated to advancing technology for the analysis of speech, text and document data; Andreas Terzis, associate professor in the Department of Computer Science at the Whiting School of Engineering; Sarah Wheelan, assistant professor of oncology bioinformatics in the School of Medicine; and Scott Zeger, professor of biostatistics in the Bloomberg School of Public Health and the university's vice provost for research.

Data-Scope will be able to handle 5 petabytes of data. That's the equivalent of 100 million four-drawer file cabinets filled with text. (Fifty petabytes would equal the entire written work of humankind, from the beginning of history until now, in all languages.)

The new apparatus will allow Szalay and a host of other Johns Hopkins researchers (not to mention those at other institutions, including universities and national laboratories such as Los Alamos in New Mexico and Oak Ridge in Tennessee) to conduct research directly in the database, which is where Szalay contends that more and more science is being done.

"The Data-Scope will allow us to mine out relationships among data that already exist, but that we can't yet handle, and to sift discoveries from what seems like an overwhelming flow of information," he said. "New discoveries will definitely emerge this way. There are relationships and patterns that we just cannot fathom buried in that onslaught of data. Data-Scope will tease these out."

According to Szalay, there are at least 20 research groups within Johns Hopkins that are grappling with data problems totaling 3 petabytes. (Three petabytes is equal to about 20 billion photos on Facebook.) Without Data-Scope, "they would have to wait years in order to analyze that amount of data," Szalay said.

The two-year NSF grant, to be supplemented with almost $1 million from Johns Hopkins, will underwrite the design and building of the new instrument and its first year of operation, expected to begin in May 2011. Szalay said that the range of material that the Data-Scope will handle will be "breathtakingly large, from genomics to ocean circulation, turbulence, astrophysics, environmental science, public health and beyond."

"There really is nothing like this at any university right now," Szalay said. "Such systems usually take many years to build up, but we are doing it much more quickly. It's similar to what Google is doing-of course on a thousand-times-larger scale than we are. This instrument will be the best in the academic world, bar none."

Zeger said he is excited about the research possibilities and collaborations that the new instrument will make possible.

"The NSF funding of a high-performance computing system, specially designed by Dr. Szalay and his team to solve large computational problems, will contribute to Johns Hopkins' remaining in the forefront of many areas, including biomedicine, where I work," he said. "The new genomic data are voluminous. Their analysis requires machines faster than are currently available. Dr. Szalay's machine will enable our biomedical and computational scientists to work together to solve problems that would have been beyond them otherwise."

Jonathan Bagger, vice provost for graduate and postdoctoral programs and special projects, said he believes that the Data-Scope positions Johns Hopkins to play a crucial role in the next revolution in science: data analysis.

"The Data-Scope is specially designed to bring large amounts of data literally under the microscope," he said. "By manipulating data in new ways, Johns Hopkins researchers will be able to advance their science in ways never before possible. I am excited that Johns Hopkins is in the forefront of this new field of inquiry: developing the calculus of the 21st century."

The instrument will be part of a new energy-efficient computing center that is being constructed in the basement of the Bloomberg Center for Physics and Astronomy on the Homewood campus. The house-sized room once served as a mission control center for the Far Ultraviolet Spectroscopic Explorer, a NASA satellite. This computing center is being built using a $1.3 million federal stimulus grant from the National Science Foundation.

Lisa De Nike | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>