Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SDSC’s ‘Gordon’ Among World’s 50 Fastest Supercomputers

16.11.2011
Gordon, a unique data-intensive supercomputer using flash-based memory that will enter production in January at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, made its debut as the 48th fastest supercomputer in the world, according to the latest Top500 list.

SDSC researchers submitted an entry for Gordon using 218 teraflops per second (Tflop/s) and 12,608 cores – about 75 percent of the system. Built by SDSC researchers and Appro, a leading developer of supercomputing solutions, Gordon, the next generation Appro Xtreme-X™ Supercomputer is currently undergoing acceptance testing and when made available to the research community on January 1, 2012, it will have 16,384 cores and achieve over 280 Tflop/s.

The latest Top500 rankings were announced during the SC11 (Supercomputing 2011) conference in Seattle this week. In related acceptance runs, Gordon was tested as to its ability to do I/O (input/output) operations, and achieved an unprecedented 35 million IOPS (input/output operations per second), making it the most powerful supercomputer ever commissioned by the National Science Foundation (NSF) for doing IO.

IOPS is an important measure for data intensive computing since it indicates the ability of a storage system to perform I/O operations on small transfer sizes of randomly organized data – something prevalent in database and data mining applications.

Gordon’s Top500 result is notable in that the Tflop/s ranking was achieved using about half the number of cores compared to most other systems. That’s because Gordon is among the first systems – and the first one commissioned by the NSF – to use Intel® Xeon® processor E5 Family, which perform twice as many operations per clock (eight versus four) of any system currently in use.

“These are truly remarkable results not only for us, but for countless researchers who are moving along with us into an era of data-intensive computing, where supercomputers using innovative new architectures will become a vital tool for them in accelerating new discoveries across a wide range of disciplines,” said Michael Norman, director of SDSC and a co-principal investigator of the Gordon project, the result of a five-year, $20 million NSF award.

“Taken together, these two results mean that Gordon will be the defacto leader in NSF systems in terms of ‘big data’ analysis computing,” said Allan Snavely, SDSC’s associate director and a co-PI for the Gordon system. “Gordon was designed from the outset to be a balanced system between compute and I/O to take on some of the most data-intensive challenges in the real world, not just to score well in terms of FLOPS.”

Gordon is the first high-performance supercomputer to use large amounts of flash-based SSD (solid state drive) memory – think of it as the world’s largest thumb drive. Flash memory is more common in smaller devices such as mobile phones and laptop computers, but unique for supercomputers, which generally use slower spinning disk technology. Gordon uses 1,024 of Intel’s latest high endurance SSD’s, providing the significantly higher performance and endurance required for data intensive applications.

“Gordon, the Appro Xtreme-X Supercomputer, rises to the challenge of the San Diego Supercomputer Center’s computational demands with delivery of a data-intensive computing solution that blends cutting-edge for compute, network, and storage,” said Steve Lyness, vice president of Appro HPC Solutions Group. “The Appro Xtreme-X system based on the Future Intel Xeon processor E5 Family and the new Intel SSD 710 Series will maximize I/O capabilities and flash memory support to analyze large data sets used by SDSC to answer modern science’s critical problems.”

Gordon is capable of handling massive data bases while providing up to 100 times faster speeds when compared to hard drive disk systems for some queries. With almost 5 TB (terabytes) of high-performance flash memory in each I/O node, Gordon will provide a new level of performance and capacity for solving the most challenging data-intensive challenges, such as large graph problems, data mining operations, de novo genome assembly, database applications, and quantum chemistry. Gordon’s unique architecture includes:

‧ 1,024 dual-socket compute nodes, each with 2 8-core Intel Xeon E5 Family processors, and 64 GB (gigabyte) DDR3 1333 memory
‧ Over 300 trillion bytes of high-performance Intel SSD 710 Series, flash memory solid state drives via 64 dual-socket Intel Xeon processor 5600 Series I/O nodes
‧ Large memory supernodes capable of presenting more than 2 TB of cache coherent memory using ScaleMP’s vSMP Foundation software
‧ 3D torus interconnect: Coupled with the dual rail QDR network to provide a cost-effective, power efficient, and fault-tolerant interconnect

‧ High-performance parallel file system with over 4 PB (petabytes) of capacity, and sustained rates of 100 GB/s (gigabytes per second)

The Top500 list of the world’s most powerful supercomputers, now in its 19th year, has been joined by another supercomputer ranking called the Graph500. While developers of the new ranking complements the Top500, industry experts say that the Graph500 ranking seeks to quantify how much work a supercomputer can do based on its ability to analyze very large graph-based datasets that have millions of disparate points, while the Top500 ranking uses LINPACK software to determine sheer speed – or how fast a supercomputer can perform linear algebraic calculations.

Trestles, another new but smaller supercomputer using flash-based memory and launched earlier this year by SDSC, ranked XX on the latest Graph500 lists, also announced this week at SC11. The ranking was based on runs using less than half of Trestles overall compute capabilities.

With 10,368 processor cores, 324 nodes, and a peak speed of 100 teraflops per second (TFlop/s), Trestles has already been used for more than 200 separate research projects since its launch last January, with research areas ranging from astrophysics to molecular dynamics. Gordon and Trestles are available to users of the NSF’s new XSEDE (Extreme Science and Engineering Discovery Environment) program, which integrates 16 supercomputers and high-end visualization and data analysis resources across the country to provide the most comprehensive collection of advanced digital services in the world. The new project replaced the NSF’s TeraGrid program after about 10 years.

Jan Zverina | Newswise Science News
Further information:
http://www.sdsc.edu

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>