Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Set a New Simulation Speed Record on the Sequoia Supercomputer

02.05.2013
Computer scientists at Lawrence Livermore National Laboratory (LLNL) and Rensselaer Polytechnic Institute have set a high performance computing speed record that opens the way to the scientific exploration of complex planetary-scale systems.

In a paper to be published in May, the joint team will announce a record-breaking simulation speed of 504 billion events per second on LLNL’s Sequoia Blue Gene/Q supercomputer, dwarfing the previous record set in 2009 of 12.2 billion events per second.

Constructed by IBM, the 120-rack Sequoia supercomputer has a peak performance of 25 petaflops per second and is the second fastest supercomputer in the world, with a total speed and capacity equivalent to about one million desktop PCs. A petaflop is a quadrillion floating point operations per second.

In addition to breaking the record for computing speed, the research team set a record for the most highly parallel “discrete event simulation,” with 7.86 million simultaneous tasks using 1.97 million cores. Discrete event simulations are used to model irregular systems with behavior that cannot be described by equations, such as communication networks, traffic flows, economic and ecological models, military combat scenarios, and many other complex systems.

Prior to the record-setting experiment, a preliminary scaling study was conducted at the Rensselaer supercomputing center, the Computational Center for Nanotechnology Innovations (CCNI). The researchers tuned parameters on the CCNI’s two-rack Blue Gene/Q system and optimized the experiment to scale up and run on the 120-rack Sequoia system.

Authors of the study are Peter Barnes Jr. and David Jefferson of LLNL, and CCNI Director and computer science professor Chris Carothers and graduate student Justin LaPre of Rensselaer.

The records were set using the ROSS (Rensselaer’s Optimistic Simulation System) simulation package developed by Carothers and his students, and using the Time Warp synchronization algorithm originally developed by Jefferson.

“The significance of this demonstration is that direct simulation of ‘planetary scale’ models is now, in principle at least, within reach,” Barnes said. “‘Planetary scale’ in the context of the joint team’s work means simulations large enough to represent all 7 billion people in the world or the entire Internet’s few billion hosts.”

“This is an exciting time to be working in high performance computing, as we explore the petascale and move aggressively toward exascale computing,” Carothers said. “We are reaching an interesting transition point where our simulation capability is limited more by our ability to develop, maintain, and validate models of complex systems than by our ability to execute them in a timely manner.”

The calculations were completed while Sequoia was in unclassified “early science” service as part of the machine’s integration period. The system is now in classified service. Sequoia is dedicated to the National Nuclear Security Administration’s (NNSA) Advanced Simulation and Computing (ASC) program for stewardship of the nation’s nuclear weapons stockpile, a joint effort by LLNL, Los Alamos National Laboratory, and Sandia National Laboratories. The ASC program provided time on Sequoia to the LLNL-Rensselaer team as the capabilities tested have potential relevance to NNSA/DOE missions. This work also was supported by LLNL’s Laboratory Directed Research and Development program.

Since opening in 2007, the CCNI has enabled researchers at Rensselaer and around the country to tackle challenges ranging from advanced manufacturing to cancer screening to sustainable energy. External funding for these research activities has exceeded $50 million and has led to an economic impact of more than $130 million across New York state. A partnership between Rensselaer and IBM, CCNI currently supports a network of more than 850 researchers, faculty, and students from a mix of universities, government laboratories, and companies across a diverse spectrum of scientific and engineering disciplines.

Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
Donald B. Johnston
Lawrence Livermore National Laboratory
Livermore, CA
925-423-4902
johnston19@llnl.gov

Michael Mullaney | Newswise
Further information:
http://www.rpi.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>