Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Set a New Simulation Speed Record on the Sequoia Supercomputer

02.05.2013
Computer scientists at Lawrence Livermore National Laboratory (LLNL) and Rensselaer Polytechnic Institute have set a high performance computing speed record that opens the way to the scientific exploration of complex planetary-scale systems.

In a paper to be published in May, the joint team will announce a record-breaking simulation speed of 504 billion events per second on LLNL’s Sequoia Blue Gene/Q supercomputer, dwarfing the previous record set in 2009 of 12.2 billion events per second.

Constructed by IBM, the 120-rack Sequoia supercomputer has a peak performance of 25 petaflops per second and is the second fastest supercomputer in the world, with a total speed and capacity equivalent to about one million desktop PCs. A petaflop is a quadrillion floating point operations per second.

In addition to breaking the record for computing speed, the research team set a record for the most highly parallel “discrete event simulation,” with 7.86 million simultaneous tasks using 1.97 million cores. Discrete event simulations are used to model irregular systems with behavior that cannot be described by equations, such as communication networks, traffic flows, economic and ecological models, military combat scenarios, and many other complex systems.

Prior to the record-setting experiment, a preliminary scaling study was conducted at the Rensselaer supercomputing center, the Computational Center for Nanotechnology Innovations (CCNI). The researchers tuned parameters on the CCNI’s two-rack Blue Gene/Q system and optimized the experiment to scale up and run on the 120-rack Sequoia system.

Authors of the study are Peter Barnes Jr. and David Jefferson of LLNL, and CCNI Director and computer science professor Chris Carothers and graduate student Justin LaPre of Rensselaer.

The records were set using the ROSS (Rensselaer’s Optimistic Simulation System) simulation package developed by Carothers and his students, and using the Time Warp synchronization algorithm originally developed by Jefferson.

“The significance of this demonstration is that direct simulation of ‘planetary scale’ models is now, in principle at least, within reach,” Barnes said. “‘Planetary scale’ in the context of the joint team’s work means simulations large enough to represent all 7 billion people in the world or the entire Internet’s few billion hosts.”

“This is an exciting time to be working in high performance computing, as we explore the petascale and move aggressively toward exascale computing,” Carothers said. “We are reaching an interesting transition point where our simulation capability is limited more by our ability to develop, maintain, and validate models of complex systems than by our ability to execute them in a timely manner.”

The calculations were completed while Sequoia was in unclassified “early science” service as part of the machine’s integration period. The system is now in classified service. Sequoia is dedicated to the National Nuclear Security Administration’s (NNSA) Advanced Simulation and Computing (ASC) program for stewardship of the nation’s nuclear weapons stockpile, a joint effort by LLNL, Los Alamos National Laboratory, and Sandia National Laboratories. The ASC program provided time on Sequoia to the LLNL-Rensselaer team as the capabilities tested have potential relevance to NNSA/DOE missions. This work also was supported by LLNL’s Laboratory Directed Research and Development program.

Since opening in 2007, the CCNI has enabled researchers at Rensselaer and around the country to tackle challenges ranging from advanced manufacturing to cancer screening to sustainable energy. External funding for these research activities has exceeded $50 million and has led to an economic impact of more than $130 million across New York state. A partnership between Rensselaer and IBM, CCNI currently supports a network of more than 850 researchers, faculty, and students from a mix of universities, government laboratories, and companies across a diverse spectrum of scientific and engineering disciplines.

Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
Donald B. Johnston
Lawrence Livermore National Laboratory
Livermore, CA
925-423-4902
johnston19@llnl.gov

Michael Mullaney | Newswise
Further information:
http://www.rpi.edu

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>