Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Set a New Simulation Speed Record on the Sequoia Supercomputer

02.05.2013
Computer scientists at Lawrence Livermore National Laboratory (LLNL) and Rensselaer Polytechnic Institute have set a high performance computing speed record that opens the way to the scientific exploration of complex planetary-scale systems.

In a paper to be published in May, the joint team will announce a record-breaking simulation speed of 504 billion events per second on LLNL’s Sequoia Blue Gene/Q supercomputer, dwarfing the previous record set in 2009 of 12.2 billion events per second.

Constructed by IBM, the 120-rack Sequoia supercomputer has a peak performance of 25 petaflops per second and is the second fastest supercomputer in the world, with a total speed and capacity equivalent to about one million desktop PCs. A petaflop is a quadrillion floating point operations per second.

In addition to breaking the record for computing speed, the research team set a record for the most highly parallel “discrete event simulation,” with 7.86 million simultaneous tasks using 1.97 million cores. Discrete event simulations are used to model irregular systems with behavior that cannot be described by equations, such as communication networks, traffic flows, economic and ecological models, military combat scenarios, and many other complex systems.

Prior to the record-setting experiment, a preliminary scaling study was conducted at the Rensselaer supercomputing center, the Computational Center for Nanotechnology Innovations (CCNI). The researchers tuned parameters on the CCNI’s two-rack Blue Gene/Q system and optimized the experiment to scale up and run on the 120-rack Sequoia system.

Authors of the study are Peter Barnes Jr. and David Jefferson of LLNL, and CCNI Director and computer science professor Chris Carothers and graduate student Justin LaPre of Rensselaer.

The records were set using the ROSS (Rensselaer’s Optimistic Simulation System) simulation package developed by Carothers and his students, and using the Time Warp synchronization algorithm originally developed by Jefferson.

“The significance of this demonstration is that direct simulation of ‘planetary scale’ models is now, in principle at least, within reach,” Barnes said. “‘Planetary scale’ in the context of the joint team’s work means simulations large enough to represent all 7 billion people in the world or the entire Internet’s few billion hosts.”

“This is an exciting time to be working in high performance computing, as we explore the petascale and move aggressively toward exascale computing,” Carothers said. “We are reaching an interesting transition point where our simulation capability is limited more by our ability to develop, maintain, and validate models of complex systems than by our ability to execute them in a timely manner.”

The calculations were completed while Sequoia was in unclassified “early science” service as part of the machine’s integration period. The system is now in classified service. Sequoia is dedicated to the National Nuclear Security Administration’s (NNSA) Advanced Simulation and Computing (ASC) program for stewardship of the nation’s nuclear weapons stockpile, a joint effort by LLNL, Los Alamos National Laboratory, and Sandia National Laboratories. The ASC program provided time on Sequoia to the LLNL-Rensselaer team as the capabilities tested have potential relevance to NNSA/DOE missions. This work also was supported by LLNL’s Laboratory Directed Research and Development program.

Since opening in 2007, the CCNI has enabled researchers at Rensselaer and around the country to tackle challenges ranging from advanced manufacturing to cancer screening to sustainable energy. External funding for these research activities has exceeded $50 million and has led to an economic impact of more than $130 million across New York state. A partnership between Rensselaer and IBM, CCNI currently supports a network of more than 850 researchers, faculty, and students from a mix of universities, government laboratories, and companies across a diverse spectrum of scientific and engineering disciplines.

Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
Donald B. Johnston
Lawrence Livermore National Laboratory
Livermore, CA
925-423-4902
johnston19@llnl.gov

Michael Mullaney | Newswise
Further information:
http://www.rpi.edu

More articles from Information Technology:

nachricht Football through the eyes of a computer
14.06.2018 | Universität Konstanz

nachricht People recall information better through virtual reality, says new UMD study
14.06.2018 | University of Maryland

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>