Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Use Satellites, Underwater Robot to Study Atlantic Sturgeon Migrations

07.05.2013
More than a century ago, an estimated 180,000 female Atlantic sturgeon arrived from the coast in the spring to spawn in the Delaware River and fishermen sought their caviar as a lucrative export to Europe. Overfishing contributed to steep population declines, however, and today numbers have dwindled to fewer than 300 adults.

Researchers at the University of Delaware and Delaware State University are using satellites, acoustic transmitters, an underwater robot and historical records to pinpoint the ocean conditions that the fish prefer during migrations — and potentially help fishermen avoid spots where they might unintentionally catch this endangered species.


University of Delaware

University of Delaware and Delaware State University researchers are using tools such as the OTIS underwater glider to pinpoint the ocean conditions that sturgeon prefer. The sturgeon will be tagged and released.

“There are specific, observable waters in the ocean that we hypothesize are more associated with this species,” said Matthew Oliver, assistant professor of oceanography in UD’s College of Earth, Ocean, and Environment.

Oliver and graduate student Matt Breece compared prior years’ satellite data on ocean temperature and chlorophyll levels with locations where sturgeon were previously tracked migrating along the Mid-Atlantic coast. Based on patterns they found between the datasets, they are now using current satellite information to make rough daily predictions on where the sturgeon are migrating.

They are testing their predictions by directing a torpedo-shaped robot, called an oceanographic telemetry identification sensor (OTIS) glider, to those locations to check whether sturgeon are indeed there. Three weeks into the experiment, they have already detected 10.

The UD researchers are working with Delaware State’s Dewayne Fox, who has tagged hundreds of Atlantic sturgeon with transmitters to track where they go. The tags set off alerts when the fish pass by a set array of receivers in Delaware Bay, and the glider expands that range by also picking up on the tags.

The device is on a three-month mission to find sturgeon based on the researchers’ predictions, controlled remotely on where to go from Oliver’s lab at the Hugh R. Sharp Campus in Lewes. The device can collect additional ocean data below the surface, including salinity, dissolved oxygen levels, chlorophyll and ocean currents.

“We’re actually flying through these different water types, testing the hypothesis objectively to see if this is actually an association between sturgeon and satellite observations,” Oliver said.

Supported by MARACOOS (Mid-Atlantic Regional Association Coastal Ocean Observation System), these ocean color satellite observations are coming in real time from the UD satellite receiving station. These satellite observations provide the scientific context for fisheries research in the Mid-Atlantic and are being leveraged by Oliver and Fox for this study.

They found their first sturgeon near Chincoteague on April 17, a 93-pound fish that had been tagged in 2010, and have since located nine more.

The approach could help reduce interactions with the endangered sturgeon by informing local fishermen of their probability of encountering sturgeon. The idea is that if a pocket of preferred water conditions moves, the sturgeon moves with it.

“These things move around all the time,” Oliver said. “That’s the hard part of resource management in the ocean.”

The lab has done similar work on sand tiger sharks, last fall detecting 23 sand tigers and showing that in-water measurements made by OTIS are predictors of shark locations.

The last two autumns have shown that there is a possibility that Atlantic sturgeon and sand tiger sharks may be showing some habitat association as they migrate. The current experiment helps test that idea.

In the future, Oliver would like to try having multiple gliders in the water to search for sturgeon at various sites simultaneously. The additional information would confirm if findings are representative of a broader area or not. In the meantime, the experiment is in its early stages.

“It’s very much exploratory at this point,” Oliver said.

Progress on the mission, along with pictures of sturgeon detected by OTIS are available on the Oliver Lab Facebook page (https://www.facebook.com/OrbLab).

Andrea Boyle Tippett | Newswise
Further information:
http://www.udel.edu

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>