Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Use Satellites, Underwater Robot to Study Atlantic Sturgeon Migrations

07.05.2013
More than a century ago, an estimated 180,000 female Atlantic sturgeon arrived from the coast in the spring to spawn in the Delaware River and fishermen sought their caviar as a lucrative export to Europe. Overfishing contributed to steep population declines, however, and today numbers have dwindled to fewer than 300 adults.

Researchers at the University of Delaware and Delaware State University are using satellites, acoustic transmitters, an underwater robot and historical records to pinpoint the ocean conditions that the fish prefer during migrations — and potentially help fishermen avoid spots where they might unintentionally catch this endangered species.


University of Delaware

University of Delaware and Delaware State University researchers are using tools such as the OTIS underwater glider to pinpoint the ocean conditions that sturgeon prefer. The sturgeon will be tagged and released.

“There are specific, observable waters in the ocean that we hypothesize are more associated with this species,” said Matthew Oliver, assistant professor of oceanography in UD’s College of Earth, Ocean, and Environment.

Oliver and graduate student Matt Breece compared prior years’ satellite data on ocean temperature and chlorophyll levels with locations where sturgeon were previously tracked migrating along the Mid-Atlantic coast. Based on patterns they found between the datasets, they are now using current satellite information to make rough daily predictions on where the sturgeon are migrating.

They are testing their predictions by directing a torpedo-shaped robot, called an oceanographic telemetry identification sensor (OTIS) glider, to those locations to check whether sturgeon are indeed there. Three weeks into the experiment, they have already detected 10.

The UD researchers are working with Delaware State’s Dewayne Fox, who has tagged hundreds of Atlantic sturgeon with transmitters to track where they go. The tags set off alerts when the fish pass by a set array of receivers in Delaware Bay, and the glider expands that range by also picking up on the tags.

The device is on a three-month mission to find sturgeon based on the researchers’ predictions, controlled remotely on where to go from Oliver’s lab at the Hugh R. Sharp Campus in Lewes. The device can collect additional ocean data below the surface, including salinity, dissolved oxygen levels, chlorophyll and ocean currents.

“We’re actually flying through these different water types, testing the hypothesis objectively to see if this is actually an association between sturgeon and satellite observations,” Oliver said.

Supported by MARACOOS (Mid-Atlantic Regional Association Coastal Ocean Observation System), these ocean color satellite observations are coming in real time from the UD satellite receiving station. These satellite observations provide the scientific context for fisheries research in the Mid-Atlantic and are being leveraged by Oliver and Fox for this study.

They found their first sturgeon near Chincoteague on April 17, a 93-pound fish that had been tagged in 2010, and have since located nine more.

The approach could help reduce interactions with the endangered sturgeon by informing local fishermen of their probability of encountering sturgeon. The idea is that if a pocket of preferred water conditions moves, the sturgeon moves with it.

“These things move around all the time,” Oliver said. “That’s the hard part of resource management in the ocean.”

The lab has done similar work on sand tiger sharks, last fall detecting 23 sand tigers and showing that in-water measurements made by OTIS are predictors of shark locations.

The last two autumns have shown that there is a possibility that Atlantic sturgeon and sand tiger sharks may be showing some habitat association as they migrate. The current experiment helps test that idea.

In the future, Oliver would like to try having multiple gliders in the water to search for sturgeon at various sites simultaneously. The additional information would confirm if findings are representative of a broader area or not. In the meantime, the experiment is in its early stages.

“It’s very much exploratory at this point,” Oliver said.

Progress on the mission, along with pictures of sturgeon detected by OTIS are available on the Oliver Lab Facebook page (https://www.facebook.com/OrbLab).

Andrea Boyle Tippett | Newswise
Further information:
http://www.udel.edu

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>