Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop method for verifying safety of computer-controlled devices

22.04.2009
Researchers at Carnegie Mellon University's School of Computer Science have developed a new method for systematically identifying bugs in aircraft collision avoidance systems, high-speed train controls and other complex, computer-controlled devices, collectively known as cyber-physical systems (CPS).

The approach, developed by University Professor of Computer Science Edmund M. Clarke and Andre Platzer, assistant professor of computer science, already has detected a flaw in aircraft collision avoidance maneuvers —since corrected — that could have caused mid-air collisions.

It also has verified the soundness of the European Train Control System. Ultimately, the method could be used on other cyber-physical systems, such as robotic surgery devices and nano-level manufacturing equipment.

"Engineers increasingly are relying on computers to improve the safety and precision of physical systems that must interact with the real world, whether they be adaptive cruise controls in automobiles or machines that monitor critically ill patients," Clarke said. "With systems becoming more and more complex, mere trial-and-error testing is unlikely to detect subtle problems in system design that can cause disastrous malfunctions. Our method is the first that can prove these complex cyber-physical systems operate as intended, or else generate counterexamples of how they can fail using computer simulation."

In the case of aircraft collision avoidance systems, for instance, Platzer and Clarke used their method to analyze so-called roundabout maneuvers. When two aircraft are on rapidly converging paths, one technique for avoiding collisions is for the system to order each pilot to turn right and then circle to the left until the aircraft can safely turn right again to resume their original paths. It's as if the aircraft are following a large traffic circle, or rotary, in the sky. But analysis by the Carnegie Mellon researchers identified a counterexample: when aircraft approach each other at certain angles, the roundabout maneuver actually creates a new collision course that, in the few seconds remaining before their paths cross, the pilots might not have time to recognize.

Like Model Checking, a method pioneered by Clarke that today is the most widely used technique for detecting and diagnosing errors in complex hardware and software design, the new method analyzes the logic underlying the system design, much as a mathematician uses a proof to determine that a theorem is correct. Clarke shared the 2007 A.M. Turing Award, generally considered the computer science equivalent of the Nobel Prize, for his role in developing Model Checking.

A crucial difference, however, is that Model Checking can examine every possible state of a discrete finite-state system, such as a new circuit design for a computer chip; that's not possible for a CPS that must interact with the infinitely variable real world. Even if the differential equations that govern these systems can be solved — and they often can't — it usually is impossible to use the results to predict the behavior of the system, Platzer said. Instead, he and Clarke have developed algorithms that decompose the systems until they produce differential invariants — mathematical descriptions of parts of the system that always remain the same. These differential invariants, in turn, can be used to prove the global logic of the CPS.

"When the system design is sound, as we found in the case of the European control system for train traffic or the repaired flight controller, our method can provide conclusive proof," Platzer said. Likewise, when flaws exist, the method reliably generates counterexamples. "Finding the counterexamples is actually the easy part," he added. "Proving that they are fixed is hard."

The demand for methods that can prove a CPS or hybrid system operates as intended will only increase as these systems become more numerous and more crucial for everyday life, Platzer said. "Bugs in complex cyber-physical systems like cars, aircraft, chips or medical devices are expensive to fix and may endanger human life," he explained. "In transportation, the percentage of development cost spent on design and testing new control software is already well above 50 percent and is steadily rising."

The National Science Foundation (NSF) has identified the design and verification of CPS as a key area of research. The increasing use of robotic devices, the growth of sensor networks, the proposed creation of a "smart grid" for delivering electrical power, a greater reliance on automated war fighting and growing use of efficient, "zero-net-energy" buildings are all examples of a growing reliance on computer control systems that are tightly coupled to physical systems. This work was sponsored, in part, by the NSF and the German Research Council.

About Carnegie Mellon: Carnegie Mellon is a private research university with a distinctive mix of programs in engineering, computer science, robotics, business, public policy, science and social science, fine arts and the humanities. More than 11,000 undergraduate and graduate students receive an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration, and innovation. A small student-to-faculty ratio provides an opportunity for close interaction between students and professors. While technology is pervasive on its 145-acre Pittsburgh campus, Carnegie Mellon is also distinctive among leading research universities for the world-renowned programs in its College of Fine Arts. A global university, Carnegie Mellon has campuses California's Silicon Valley and Qatar, and programs in Asia, Australia and Europe.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>