Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists detect 'fingerprint' of high-temp superconductivity above transition temperature

28.08.2009
Method may help identify conditions needed to get current flowing at higher temperatures

A team of U.S. and Japanese scientists has shown for the first time that the spectroscopic "fingerprint" of high-temperature superconductivity remains intact well above the super chilly temperatures at which these materials carry current with no resistance.

This confirms that certain conditions necessary for superconductivity exist at the warmer temperatures that would make these materials practical for energy-saving applications — if scientists can figure out how to get the current flowing.

"Our measurements give the most definitive spectroscopic evidence that the material we studied is a superconductor, even above the transition temperature, but one without the quantum phase coherence required for current to flow with no resistance," said physicist Seamus Davis of the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Cornell University, who led the research team. Davis was recently selected to head a DOE-funded Energy Frontier Research Center at Brookhaven that will examine the underlying nature of superconductivity in complex materials.

"The spectroscopic 'fingerprint' confirms that, at these higher temperatures, electrons are pairing up as they must in a superconductor, but for some reason they are not co-operating coherently to carry current," Davis said.

The technique and findings, described in a paper published August 28, 2009, in Science, may point the way to identifying what inhibits coherent superconductivity at higher temperatures. That knowledge, in turn, may help scientists achieve the ultimate goal of developing super-conducting materials for real-world practical devices such as zero-loss power transmission lines.

Many previous studies have hinted that the higher temperature "parent" state in copper-oxide, or cuprate, superconductors might be a "quantum phase incoherent" superconductor — a state in which electron pairs exist but don't flow coherently as they do below the transition temperature. "But the methods used in these studies were indirect," Davis said. "Each of the results could be described by alternate explanations. What we were searching for was an incontrovertible signature."

Using a spectroscopic imaging scanning tunneling microscopy method developed over many years, Davis and his collaborators had previously conducted extensive studies of the superconducting state of a copper-oxide superconductor containing bismuth, strontium, and calcium (known as BSCCO). These studies identified a detailed spectroscopic signature containing all the quantum mechanical details of that superconducting state.

The new study was designed to see whether the signature changed when the material was warmed above the transition temperature, which is 37 kelvin, or -236 degrees Celsius]. This was a major challenge, however, because the method works best at very cold temperatures. As materials warm up, electrons start moving around more energetically, decreasing the resolution of the measurements.

"We had to make a series of modifications to greatly increase the signal-to-noise ratio for all measurements," Davis said. Some measurements were made over a period of up to 10 days. By averaging measurements over those long times, the scientists were better able to isolate a weak signal from the random background noise.

The results were definitive: "We found that the characteristic signature passes unchanged from the superconducting state into the parent state — up to temperatures of at least 55 K — or 1.5 times the transition temperature," Davis said. "We know of no explanation for why this fingerprint should remain other than that it represents the phase-incoherent superconducting state which has been proposed to exist based on other kinds of measurements."

If the parent state is indeed an incoherent superconductor, the next step is to figure out why. "What breaks the cooperation of the electron pairs? What is the problem that is overwhelming the superconductivity?"

These are questions Davis's technique can address in a quantitative manner. For example, by varying the chemical composition, level of doping, or characteristics of the copper-oxide planes in the layered material, the scientists can measure the strength of quantum phase fluctuations affecting electron-pair cohesion.

These measurements may help scientists zero in on ways to induce coherent superconductivity at a higher range of temperatures than previously possible. And that would be an essential step to achieving real-world applications without the need for expensive cooling systems.

This research was supported by the U.S. Department of Energy's Office of Science (Office of Basic Energy Sciences); the U.S. Office of Naval Research; the Ministry of Science and Education (Japan); and the Japan Society for the Promotion of Science. One collaborator also receives support from the U.S. Army Research Office.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>