Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists detect 'fingerprint' of high-temp superconductivity above transition temperature

28.08.2009
Method may help identify conditions needed to get current flowing at higher temperatures

A team of U.S. and Japanese scientists has shown for the first time that the spectroscopic "fingerprint" of high-temperature superconductivity remains intact well above the super chilly temperatures at which these materials carry current with no resistance.

This confirms that certain conditions necessary for superconductivity exist at the warmer temperatures that would make these materials practical for energy-saving applications — if scientists can figure out how to get the current flowing.

"Our measurements give the most definitive spectroscopic evidence that the material we studied is a superconductor, even above the transition temperature, but one without the quantum phase coherence required for current to flow with no resistance," said physicist Seamus Davis of the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Cornell University, who led the research team. Davis was recently selected to head a DOE-funded Energy Frontier Research Center at Brookhaven that will examine the underlying nature of superconductivity in complex materials.

"The spectroscopic 'fingerprint' confirms that, at these higher temperatures, electrons are pairing up as they must in a superconductor, but for some reason they are not co-operating coherently to carry current," Davis said.

The technique and findings, described in a paper published August 28, 2009, in Science, may point the way to identifying what inhibits coherent superconductivity at higher temperatures. That knowledge, in turn, may help scientists achieve the ultimate goal of developing super-conducting materials for real-world practical devices such as zero-loss power transmission lines.

Many previous studies have hinted that the higher temperature "parent" state in copper-oxide, or cuprate, superconductors might be a "quantum phase incoherent" superconductor — a state in which electron pairs exist but don't flow coherently as they do below the transition temperature. "But the methods used in these studies were indirect," Davis said. "Each of the results could be described by alternate explanations. What we were searching for was an incontrovertible signature."

Using a spectroscopic imaging scanning tunneling microscopy method developed over many years, Davis and his collaborators had previously conducted extensive studies of the superconducting state of a copper-oxide superconductor containing bismuth, strontium, and calcium (known as BSCCO). These studies identified a detailed spectroscopic signature containing all the quantum mechanical details of that superconducting state.

The new study was designed to see whether the signature changed when the material was warmed above the transition temperature, which is 37 kelvin, or -236 degrees Celsius]. This was a major challenge, however, because the method works best at very cold temperatures. As materials warm up, electrons start moving around more energetically, decreasing the resolution of the measurements.

"We had to make a series of modifications to greatly increase the signal-to-noise ratio for all measurements," Davis said. Some measurements were made over a period of up to 10 days. By averaging measurements over those long times, the scientists were better able to isolate a weak signal from the random background noise.

The results were definitive: "We found that the characteristic signature passes unchanged from the superconducting state into the parent state — up to temperatures of at least 55 K — or 1.5 times the transition temperature," Davis said. "We know of no explanation for why this fingerprint should remain other than that it represents the phase-incoherent superconducting state which has been proposed to exist based on other kinds of measurements."

If the parent state is indeed an incoherent superconductor, the next step is to figure out why. "What breaks the cooperation of the electron pairs? What is the problem that is overwhelming the superconductivity?"

These are questions Davis's technique can address in a quantitative manner. For example, by varying the chemical composition, level of doping, or characteristics of the copper-oxide planes in the layered material, the scientists can measure the strength of quantum phase fluctuations affecting electron-pair cohesion.

These measurements may help scientists zero in on ways to induce coherent superconductivity at a higher range of temperatures than previously possible. And that would be an essential step to achieving real-world applications without the need for expensive cooling systems.

This research was supported by the U.S. Department of Energy's Office of Science (Office of Basic Energy Sciences); the U.S. Office of Naval Research; the Ministry of Science and Education (Japan); and the Japan Society for the Promotion of Science. One collaborator also receives support from the U.S. Army Research Office.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>