Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science: what is the origin of the visible mass of the universe?

24.11.2008
Supercomputer calculates the mass of the nucleon

An international team of scientists has for the first time computed the masses of one of the most important constituents of matter - protons and neutrons. The tool which contributed the most to this calculation: JUGENE, a supercomputer at the Jülich research cerntre in Germany.

The elaborate simulations confirm a fundamental theory of physics, quantum chromodynamics. The team has reported their findings in the Nov. 21 issue of Science magazine.

Matter is made of atoms, atoms in turn are made of a nucleus of protons and neutrons and a cloud of orbiting electrons. “More than 99.9 % of the mass of the visible universe comes from protons and Neutrons”, says Zoltan Fodor, a Hungarian physicist, affiliated with Wuppertal University, who was the leader of the project. These particles, commonly referred to as "nucleons" by physicists, are made of three quarks.

The masses of these three quarks, however, only add up to a few percent of the total mass of a nucleon - so where does the mass of the nucleons come from? The answer is provided by Einsteins famous formula E=mc2: energy and mass are equivalent and more than 95 % of the nucleon mass originates from the motion energy of quarks and particles they exchange.

The three quarks inside a nucleon are bound together by the so-called strong interaction, a force that - as the name suggests - is very strong but only relevant at tiny distances. For quite some time, physicists have been using a theoretical description of this interaction, quantum chromodynamics. “In principle it should be possible to calculate the mass of the nucleons from quantum chromodynamics”, says Fodor.

These calculations are extremely complicated. Similarly to the electromagnetic interaction, which is transmitted by photons – small quanta of light – the strong interaction is transmitted by gluons. However, contrary to photons, the gluons interact with each other. This self-interaction is responsible for the fact that the interaction is so strong that quarks do not appear alone, but only as bound states of two or three quarks. This self-interaction makes the theoretical determination of the nucleon mass so complex, that so far it seemed to be beyond our possibilities to carry out this calculation.

Thanks to the JUGENE supercomputer at Forschungszentrum Juelich Fodor and his colleagues were able to solve the problem, and for the first time the managed to treat the strong interaction for larger distances. They calculated the masses protons, neutrons and several other particles, which are bound states of quarks. JUGENE can perform 180 billion operations in a second, a performance which makes it the number 1 supercomputer in Europe.

The calculation of Fodor and his colleagues uses a four-dimensional lattice and the solve the equations of quantum chromodynamics on the sites of this lattice.

After that they reduce the distance between the lattice sites in several steps, which brings the result closer and closer to reality, to our continuous space-time. “This is one of the most CPU-demanding calculation known to mankind”, says Fodor.

As a result the researchers obtained the mass of the nucleon, in complete agreement with the experimentally measured value. “This result indicates that quantum chromodynamics is the proper theory of the strong interaction”, concludes Fodor.

The researcher futrther explains, that “the origin of the vast majority of the visible mass is therefore settled”. There are however further riddles yet to be solved. A large fraction of the total mass of the universe is dark and its composition is yet unknown. “We do not know yet what dark matter is and how it gets its mass.”

http://www.presse-archiv.uni-wuppertal.de/html/module/publikationen/magazin_34/urknall.htm

contact:
Prof. Zoltan Fodor, Tel. 0202 439-2614,
E-Mail: fodor@theorie.physik.uni-wuppertal.de
Press contact:
Kosta Schinarakis, Tel. 02461 61-4771,
E-Mail: k.schinarakis@fz-juelich.de
Forschungszentrum Jülich…
…pursues cutting-edge interdisciplinary research on solving the grand challenges facing society in the fields of health, energy & environment, and information technologies. In combination with the two key competencies – physics and supercomputing – work at Jülich focuses on both long-term, fundamental and multidisciplinary contributions to science and technology as well as on specific technological applications. With a staff of about 4,400, Jülich – a member of the Helmholtz Association – is one of the largest research centres in Europe.
Anne Winkens
Forschungszentrum Juelich GmbH
Unternehmenskommunikation
52425 Juelich
Tel. 02461 61 8027
Fax.02461 61 8282

Anne Winkens | Forschungszentrum Jülich GmbH
Further information:
http://www.fz-juelich.de
http://www.sciencemag.org/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>