Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science: what is the origin of the visible mass of the universe?

24.11.2008
Supercomputer calculates the mass of the nucleon

An international team of scientists has for the first time computed the masses of one of the most important constituents of matter - protons and neutrons. The tool which contributed the most to this calculation: JUGENE, a supercomputer at the Jülich research cerntre in Germany.

The elaborate simulations confirm a fundamental theory of physics, quantum chromodynamics. The team has reported their findings in the Nov. 21 issue of Science magazine.

Matter is made of atoms, atoms in turn are made of a nucleus of protons and neutrons and a cloud of orbiting electrons. “More than 99.9 % of the mass of the visible universe comes from protons and Neutrons”, says Zoltan Fodor, a Hungarian physicist, affiliated with Wuppertal University, who was the leader of the project. These particles, commonly referred to as "nucleons" by physicists, are made of three quarks.

The masses of these three quarks, however, only add up to a few percent of the total mass of a nucleon - so where does the mass of the nucleons come from? The answer is provided by Einsteins famous formula E=mc2: energy and mass are equivalent and more than 95 % of the nucleon mass originates from the motion energy of quarks and particles they exchange.

The three quarks inside a nucleon are bound together by the so-called strong interaction, a force that - as the name suggests - is very strong but only relevant at tiny distances. For quite some time, physicists have been using a theoretical description of this interaction, quantum chromodynamics. “In principle it should be possible to calculate the mass of the nucleons from quantum chromodynamics”, says Fodor.

These calculations are extremely complicated. Similarly to the electromagnetic interaction, which is transmitted by photons – small quanta of light – the strong interaction is transmitted by gluons. However, contrary to photons, the gluons interact with each other. This self-interaction is responsible for the fact that the interaction is so strong that quarks do not appear alone, but only as bound states of two or three quarks. This self-interaction makes the theoretical determination of the nucleon mass so complex, that so far it seemed to be beyond our possibilities to carry out this calculation.

Thanks to the JUGENE supercomputer at Forschungszentrum Juelich Fodor and his colleagues were able to solve the problem, and for the first time the managed to treat the strong interaction for larger distances. They calculated the masses protons, neutrons and several other particles, which are bound states of quarks. JUGENE can perform 180 billion operations in a second, a performance which makes it the number 1 supercomputer in Europe.

The calculation of Fodor and his colleagues uses a four-dimensional lattice and the solve the equations of quantum chromodynamics on the sites of this lattice.

After that they reduce the distance between the lattice sites in several steps, which brings the result closer and closer to reality, to our continuous space-time. “This is one of the most CPU-demanding calculation known to mankind”, says Fodor.

As a result the researchers obtained the mass of the nucleon, in complete agreement with the experimentally measured value. “This result indicates that quantum chromodynamics is the proper theory of the strong interaction”, concludes Fodor.

The researcher futrther explains, that “the origin of the vast majority of the visible mass is therefore settled”. There are however further riddles yet to be solved. A large fraction of the total mass of the universe is dark and its composition is yet unknown. “We do not know yet what dark matter is and how it gets its mass.”

http://www.presse-archiv.uni-wuppertal.de/html/module/publikationen/magazin_34/urknall.htm

contact:
Prof. Zoltan Fodor, Tel. 0202 439-2614,
E-Mail: fodor@theorie.physik.uni-wuppertal.de
Press contact:
Kosta Schinarakis, Tel. 02461 61-4771,
E-Mail: k.schinarakis@fz-juelich.de
Forschungszentrum Jülich…
…pursues cutting-edge interdisciplinary research on solving the grand challenges facing society in the fields of health, energy & environment, and information technologies. In combination with the two key competencies – physics and supercomputing – work at Jülich focuses on both long-term, fundamental and multidisciplinary contributions to science and technology as well as on specific technological applications. With a staff of about 4,400, Jülich – a member of the Helmholtz Association – is one of the largest research centres in Europe.
Anne Winkens
Forschungszentrum Juelich GmbH
Unternehmenskommunikation
52425 Juelich
Tel. 02461 61 8027
Fax.02461 61 8282

Anne Winkens | Forschungszentrum Jülich GmbH
Further information:
http://www.fz-juelich.de
http://www.sciencemag.org/

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>