Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science: what is the origin of the visible mass of the universe?

24.11.2008
Supercomputer calculates the mass of the nucleon

An international team of scientists has for the first time computed the masses of one of the most important constituents of matter - protons and neutrons. The tool which contributed the most to this calculation: JUGENE, a supercomputer at the Jülich research cerntre in Germany.

The elaborate simulations confirm a fundamental theory of physics, quantum chromodynamics. The team has reported their findings in the Nov. 21 issue of Science magazine.

Matter is made of atoms, atoms in turn are made of a nucleus of protons and neutrons and a cloud of orbiting electrons. “More than 99.9 % of the mass of the visible universe comes from protons and Neutrons”, says Zoltan Fodor, a Hungarian physicist, affiliated with Wuppertal University, who was the leader of the project. These particles, commonly referred to as "nucleons" by physicists, are made of three quarks.

The masses of these three quarks, however, only add up to a few percent of the total mass of a nucleon - so where does the mass of the nucleons come from? The answer is provided by Einsteins famous formula E=mc2: energy and mass are equivalent and more than 95 % of the nucleon mass originates from the motion energy of quarks and particles they exchange.

The three quarks inside a nucleon are bound together by the so-called strong interaction, a force that - as the name suggests - is very strong but only relevant at tiny distances. For quite some time, physicists have been using a theoretical description of this interaction, quantum chromodynamics. “In principle it should be possible to calculate the mass of the nucleons from quantum chromodynamics”, says Fodor.

These calculations are extremely complicated. Similarly to the electromagnetic interaction, which is transmitted by photons – small quanta of light – the strong interaction is transmitted by gluons. However, contrary to photons, the gluons interact with each other. This self-interaction is responsible for the fact that the interaction is so strong that quarks do not appear alone, but only as bound states of two or three quarks. This self-interaction makes the theoretical determination of the nucleon mass so complex, that so far it seemed to be beyond our possibilities to carry out this calculation.

Thanks to the JUGENE supercomputer at Forschungszentrum Juelich Fodor and his colleagues were able to solve the problem, and for the first time the managed to treat the strong interaction for larger distances. They calculated the masses protons, neutrons and several other particles, which are bound states of quarks. JUGENE can perform 180 billion operations in a second, a performance which makes it the number 1 supercomputer in Europe.

The calculation of Fodor and his colleagues uses a four-dimensional lattice and the solve the equations of quantum chromodynamics on the sites of this lattice.

After that they reduce the distance between the lattice sites in several steps, which brings the result closer and closer to reality, to our continuous space-time. “This is one of the most CPU-demanding calculation known to mankind”, says Fodor.

As a result the researchers obtained the mass of the nucleon, in complete agreement with the experimentally measured value. “This result indicates that quantum chromodynamics is the proper theory of the strong interaction”, concludes Fodor.

The researcher futrther explains, that “the origin of the vast majority of the visible mass is therefore settled”. There are however further riddles yet to be solved. A large fraction of the total mass of the universe is dark and its composition is yet unknown. “We do not know yet what dark matter is and how it gets its mass.”

http://www.presse-archiv.uni-wuppertal.de/html/module/publikationen/magazin_34/urknall.htm

contact:
Prof. Zoltan Fodor, Tel. 0202 439-2614,
E-Mail: fodor@theorie.physik.uni-wuppertal.de
Press contact:
Kosta Schinarakis, Tel. 02461 61-4771,
E-Mail: k.schinarakis@fz-juelich.de
Forschungszentrum Jülich…
…pursues cutting-edge interdisciplinary research on solving the grand challenges facing society in the fields of health, energy & environment, and information technologies. In combination with the two key competencies – physics and supercomputing – work at Jülich focuses on both long-term, fundamental and multidisciplinary contributions to science and technology as well as on specific technological applications. With a staff of about 4,400, Jülich – a member of the Helmholtz Association – is one of the largest research centres in Europe.
Anne Winkens
Forschungszentrum Juelich GmbH
Unternehmenskommunikation
52425 Juelich
Tel. 02461 61 8027
Fax.02461 61 8282

Anne Winkens | Forschungszentrum Jülich GmbH
Further information:
http://www.fz-juelich.de
http://www.sciencemag.org/

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>