Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites approach the Shannon limit

31.10.2008
Satellites are achieving unparalleled efficiency with a new protocol, DVB-S2.

The performance of DVB-S2 satellite systems is very close to the theoretical maximum, defined by the Shannon Limit. That efficiency could be pushed even further by network optimisation tools and equipment recently developed by European researchers.

European researchers have created network optimisation hardware and software tools that are able to manage satellite resources more efficiently. The developed tools are able to push the state of the art in satellite transmission technology even further. The increased efficiencies lead to cheap broadband, TV and voice access from anywhere.

The satellite option is a compelling solution to the broadband problem for rural areas, known as the digital divide. Currently, the vast majority of broadband access is confined to Europe’s cities and towns, where people live close to telephone exchanges and can access cheap and efficient ADSL.

But vast numbers of Europeans also live in rural or even isolated regions and providing broadband access for them is more complicated.

But not, perhaps, for much longer. Recent progress in satellite technology has led to vastly improved bandwidth efficiencies. The newly developed DVB-S2, which stands for digital video broadcast satellite second generation, improves on DVB-S by a purported 30%.

“Using satellite resource management tools, based on cross-layer techniques, the IMOSAN project is trying to push that technology even further, in order to make it more attractive not only from the technical aspects, but from the business point of view as well,” explains Anastasios Kourtis, coordinator of the EU-funded project.

Cross-layer techniques work across the application, service and physical layers of a communication medium to maximise efficient usage of bandwidth.

Approaching the Shannon Limit

The Shannon Limit establishes the maximum capacity of any channel. A channel is subject to bandwidth and noise restrictions, but its capacity can be improved with clever modulation and multiplexing techniques. The theoretical ultimate limit of a channel for specific bandwidth and signal-to-noise ratio is called the Shannon Limit.

Like the speed of light, that limit cannot be overcome and, again like the speed of light, it is very difficult even to approach it.

The inherent feature of DVB-S2, called Adaptive Coding and Modulation (ACM), allows a satellite system to adapt, in real time, to various transmission conditions and service demands. In this respect, satellite channels are very close to their theoretical limit.

“The IMOSAN consortium developed innovative software and hardware modules and protocols, called the Satellite Resource Management System (SRMS) that apply ACM to voice, data and TV in a clever way, allowing the provision of cost-effective ‘triple-play’ satellite services to users in rural or isolated areas,” Kourtis explains.

Key advance

SRMS was a key advance, but only one of a series of innovations and improvements the team performed on the DVB-S2 system. They also developed hardware and software that supports MPEG-2 HDTV. They developed software that can use both the older Multiprotocol Encapsulation (MPE) scheme and the newer Ultra Light Encapsulation (ULE) one. Both have also been optimised for IPv4 or IPv6.

IPv4 is the current Internet Protocol (IP) that we mainly use for all data communications. But the unique IP addresses are running out rapidly, and the protocol is creaking under the strain of modern network demands. IPv6 will address this shortage and offer other new features to improve the internet.

It offers so many unique addresses that it would be possible to give an address to every individual grain of sand on earth and still have enough numbers left to give a unique one to every individual on the planet, any pets they have and all the devices they own. IPv6 also provides better security and error correction and it is the IP standard of the future. Including it in their system means that IMOSAN has future-proofed its work.

The work of IMOSAN is expected to have significant impact on satellite communications.

“The innovative tools and techniques that were developed in the frame of IMOSAN, gave [us] a great opportunity [for] efficient collaboration among private-sector companies and public academic organisations, with a common goal: to provide cost-effective broadband satellite services to rural and isolated areas,” Kourtis concludes. This should help tackle the digital divide problem.

This is part one of a two-part feature on the IMOSAN project funded by the ICT strand of the EU’s Sixth Framework Programme for research. Part two will appear on 4 November.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90175

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>