Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite data look behind the scenes of deadly earthquake

19.10.2009
Using satellite radar data and GPS measurements, Chinese researchers have explained the exceptional geological events leading to the 2008 Wenchuan Earthquake that killed nearly 90 000 people in China’s Sichuan Province.

"One of the very fundamental issues for understanding an earthquake is to know how the rupture is distributed on the fault plane, which is directly related to the amount of ground shaking and the damage it could cause at the surface," said Dr Jianbao Sun of the Institute of Geology, China Earthquake Administration (IGCEA).

To learn this, Sun and Prof. Zhengkang Shen of IGCEA and Peking University’s Department of Geophysics, and collaborators acquired two kinds of satellite radar data: Advanced Synthetic Aperture Radar (ASAR) data in C-band from ESA’s Envisat satellite and Phased Array type L-band Synthetic Aperture Radar (PALSAR) data from Japan’s ALOS satellite.

Applying a technique called SAR Interferometry (InSAR) on the data, the researchers produced a set of ‘interferogram' images covering the entire coseismic rupture region and its vicinity. This interferometric map revealed the amount and scope of surface deformation produced by the earthquake.

"This is perhaps the very first time people have seen the complete deformation field produced by an earthquake on such a large scale," Sun said.

InSAR involves combining two or more radar images of the same ground location in such a way that very precise measurements – down to a scale of a few centimetres – can be made of any ground motion taking place between image acquisitions. Coloured interferograms usually appear as rainbow fringe patterns.

The researchers combined these SAR satellite data with GPS measurements and developed a model that shows fault geometry and rupture distribution of the Longmen Shan fault zone, a series of parallel faults that run for about 400 km from southwest to northeast in the region. The earthquake that struck on 12 May last year produced a 240-km-long rupture along the Beichuan fault and a 72-km-long rupture along part of the Pengguan fault.

Studying the model, they were able to determine that the fault plane dips considerably to the northwest in the zone's southwest area and then rises up to a nearly vertical position in the zone's northeast.

They also learned that the direction of the motion along the fault changed, going from a thrust where upper layer rocks were pushed up and lower layer rocks pulled down, to a 'dextral faulting', where two parts of Earth’s plates slide past each other. About a 7-metre slip, the greatest along the rupture, was detected on the Beichuan fault near Beichuan City, which was destroyed completely by the quake and suffered the highest number of casualties.

Another major finding was that the fault junctions (solid rock barriers that stop a quake from propagating from one segment to another), beneath the hardest-hit cities of Yingxiu, Beichuan and Nanba, failed to withstand the extraordinary energy released along the fault.

"These fault junctions are barriers, whose failures in a single event allowed the rupture to cascade through several fault segments, resulting in a major 7.9-earthquake," Shen explained. "Earthquakes across fault segments like this are estimated to happen about every 4000 years."

These new results were published this month in the journal Nature Geoscience, part of Nature magazine.

Following the quake, Sun and Shen worked closely with the 'Dragon 2' programme to coordinate SAR coverage of the seismic area. Dragon 2 is a joint undertaking between ESA and China’s Ministry of Science and Technology that encourages scientists to use satellite data to monitor and understand environmental phenomena in China.

"The resulting Envisat SAR data acquired along an important track close to the epicentre turned out to be vital in constraining the southern part of the deformation field and helping explain the fault geometry and rupture distribution of the Pengguan fault, which would be difficult to resolve otherwise," Shen said.

The scientists also hope the data will help to assess earthquake potential in the future.

"Under the coordination of Dragon 2, the SAR data acquired during this period will be used, along with GPS measurements, to reveal geophysical processes within the Longmen Shan fault zone and the lower crust and upper mantle, which will help us understand the earthquake and faulting mechanisms and hopefully shed light on future seismic risks in this area."

Mariangela D'Acunto | EurekAlert!
Further information:
http://www.esa.int/esaEO/SEMPT7YRA0G_index_0.html
http://www.esa.int

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>