Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safety in numbers -- a cloud-based immune system for computers

27.01.2010
A new approach for managing bugs in computer software has been developed by a team led by Prof. George Candea at EPFL. The latest version of Dimmunix, available for free download, enables entire networks of computers to cooperate in order to collectively avoid the manifestations of bugs in software.

A new IT tool, developed by the Dependable Systems Lab at EPFL in Switzerland, called "Dimmunix," enables programs to avoid future recurrences of bugs without any assistance from users or programmers.

The approach, termed "failure immunity," starts working the first time a bug occurs - it saves a signature of the bug, then observes how the computer reacts, and records a trace. When the bug is about to manifest again, Dimmunix uses these traces to rec-ognize the bug and automatically alters the execution so the program continues to run smooth-ly. With Dimmunix, your Web browser learns how to avoid freezing a second time when bugs associated with, for example, plug-ins occur. Going a step further, the latest version uses cloud computing technology to take advantage of networks and thereby inoculating entire communities of computers.

"Dimmunix could be compared to a human immune system. Once the body is infected, its immune system develops antibodies. Subsequently, when the immune system encounters the same pathogen once again, the body recognizes it and knows how to effectively fight the ill-ness," explains George Candea, director of Dependable Systems Lab, where the new tool has been developed. The young Romanian professor received his PhD in computer science from Stanford University in 2005 and his BS (1997) and MEng (1998) in computer science from the Massachusetts Institute of Technology.

The latest version, released online at the end of December (http://dimmunix.epfl.ch/), leverag-es the network. Based on the principle of cloud computing, all computers participating in the Dimmunix application community benefit from vaccines automatically produced whenever the first manifestation of a given bug within that community. This new version of Dimmunix is able to safely protect programs from bugs, even in un-trusted environments such as the In-ternet.

For the moment meant primarily for computer programmers, Dimmunix works for all widely-used programs used by private individuals and by companies. It is useful for programs written in Java and C/C++; it has been demonstrated on real software systems (JBoss, MySQL, Acti-veMQ, Apache, httpd, JDBC, Java JDK, and Limewire).

For more information:
George Candea
Tel: +41 21 693 46 48
Email: george.candea@epfl.ch

Michael Mitchell | EurekAlert!
Further information:
http://www.epfl.ch
http://dslab.epfl.ch/

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>