Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Room's ambience fingerprinted by phone

Your smart phone may soon be able to know not only that you're at the mall, but whether you're in the jewelry store or the shoe store.

Duke University computer engineers have made use of standard cell phone features – accelerometers, cameras and microphones – to turn the unique properties of a particular space into a distinct fingerprint.

While standard global positioning systems (GPS) are only accurate to 10 meters (32 feet) and do not work indoors, the new application is designed to work indoors and can be as precise as telling if a user is on one side of an interior wall or another.

The system, dubbed SurroundSense, uses the phone's built-in camera and microphone to record sound, light and colors, while the accelerometer records movement patterns of the phone's user. This information is sent to a server, which knits the disparate information together into a single fingerprint.

"You can't tell much from any of the measurements individually, but when combined, the optical, acoustic and motion information creates a unique fingerprint of the space," said Ionut Constandache, graduate student in computer science. He presented the details of SurroundSense at the 15th International Conference on Mobile Computing and Networking in Bejing on Sept. 25.

For example, in a bar, people spend little time moving and most time sitting, while the room is typically dark and noisy. In contrast, a Target store will be brightly lit with vibrant colors – especially red – with movement up and down aisles. SurroundSense can tell these differences.

Students of Romit Roy Chouhury, Duke assistant professor of electrical and computer engineering and senior member of the research team, fanned out across Durham, N.C. with their cell phones, collecting data in different types of businesses. So that they would not bias the measurements, the students "mirrored" the actions of selected customers.

"We went to 51 different stores and found that SurroundSense achieved an average accuracy of about 87 percent when all of the sensing capabilities were used," Constandache said.

As more people use the application, it gets "smarter."

"As the system collects and analyzes more and more information about a particular site, the fingerprint becomes that much more precise," said Roy Choudhury. "Not only is the ambience different at different locations, but also can be different at different times at the same location."

SurroundSense collects data at different time points, so it would be able to distinguish a Starbucks store at the morning rush when there are many customers from the slower period in mid-afternoon.

"We believe that SurroundSense is an early step toward a long-standing challenge of improving indoor localization," Roy Choudhury said.

Currently, in order for the phone to collect data, it must be held with the camera facing down, though the researchers are working on strategies for the application to work if the phone is in a pocket, case or handbag. However, as the researchers pointed out, phones are now coming onto the market that are worn on the wrist or around the neck on a necklace.

As in many technical advances, it appears that batteries can be an Achilles' heel. The Duke researchers are now considering the tradeoffs between having the application "on" all the time, which drains the battery faster, or having it take measurements at regular intervals. They are also trying to determine whether the entire application should be housed on the server, the phone, or some combination of the two.

Roy Choudhury's research is supported by the National Science Foundation, Nokia, Verizon and Microsoft Research. Duke undergraduate Martin Azizyan also participated in the project.

Richard Merritt | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>