Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Room's ambience fingerprinted by phone

28.09.2009
Your smart phone may soon be able to know not only that you're at the mall, but whether you're in the jewelry store or the shoe store.

Duke University computer engineers have made use of standard cell phone features – accelerometers, cameras and microphones – to turn the unique properties of a particular space into a distinct fingerprint.

While standard global positioning systems (GPS) are only accurate to 10 meters (32 feet) and do not work indoors, the new application is designed to work indoors and can be as precise as telling if a user is on one side of an interior wall or another.

The system, dubbed SurroundSense, uses the phone's built-in camera and microphone to record sound, light and colors, while the accelerometer records movement patterns of the phone's user. This information is sent to a server, which knits the disparate information together into a single fingerprint.

"You can't tell much from any of the measurements individually, but when combined, the optical, acoustic and motion information creates a unique fingerprint of the space," said Ionut Constandache, graduate student in computer science. He presented the details of SurroundSense at the 15th International Conference on Mobile Computing and Networking in Bejing on Sept. 25.

For example, in a bar, people spend little time moving and most time sitting, while the room is typically dark and noisy. In contrast, a Target store will be brightly lit with vibrant colors – especially red – with movement up and down aisles. SurroundSense can tell these differences.

Students of Romit Roy Chouhury, Duke assistant professor of electrical and computer engineering and senior member of the research team, fanned out across Durham, N.C. with their cell phones, collecting data in different types of businesses. So that they would not bias the measurements, the students "mirrored" the actions of selected customers.

"We went to 51 different stores and found that SurroundSense achieved an average accuracy of about 87 percent when all of the sensing capabilities were used," Constandache said.

As more people use the application, it gets "smarter."

"As the system collects and analyzes more and more information about a particular site, the fingerprint becomes that much more precise," said Roy Choudhury. "Not only is the ambience different at different locations, but also can be different at different times at the same location."

SurroundSense collects data at different time points, so it would be able to distinguish a Starbucks store at the morning rush when there are many customers from the slower period in mid-afternoon.

"We believe that SurroundSense is an early step toward a long-standing challenge of improving indoor localization," Roy Choudhury said.

Currently, in order for the phone to collect data, it must be held with the camera facing down, though the researchers are working on strategies for the application to work if the phone is in a pocket, case or handbag. However, as the researchers pointed out, phones are now coming onto the market that are worn on the wrist or around the neck on a necklace.

As in many technical advances, it appears that batteries can be an Achilles' heel. The Duke researchers are now considering the tradeoffs between having the application "on" all the time, which drains the battery faster, or having it take measurements at regular intervals. They are also trying to determine whether the entire application should be housed on the server, the phone, or some combination of the two.

Roy Choudhury's research is supported by the National Science Foundation, Nokia, Verizon and Microsoft Research. Duke undergraduate Martin Azizyan also participated in the project.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>