Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Room's ambience fingerprinted by phone

28.09.2009
Your smart phone may soon be able to know not only that you're at the mall, but whether you're in the jewelry store or the shoe store.

Duke University computer engineers have made use of standard cell phone features – accelerometers, cameras and microphones – to turn the unique properties of a particular space into a distinct fingerprint.

While standard global positioning systems (GPS) are only accurate to 10 meters (32 feet) and do not work indoors, the new application is designed to work indoors and can be as precise as telling if a user is on one side of an interior wall or another.

The system, dubbed SurroundSense, uses the phone's built-in camera and microphone to record sound, light and colors, while the accelerometer records movement patterns of the phone's user. This information is sent to a server, which knits the disparate information together into a single fingerprint.

"You can't tell much from any of the measurements individually, but when combined, the optical, acoustic and motion information creates a unique fingerprint of the space," said Ionut Constandache, graduate student in computer science. He presented the details of SurroundSense at the 15th International Conference on Mobile Computing and Networking in Bejing on Sept. 25.

For example, in a bar, people spend little time moving and most time sitting, while the room is typically dark and noisy. In contrast, a Target store will be brightly lit with vibrant colors – especially red – with movement up and down aisles. SurroundSense can tell these differences.

Students of Romit Roy Chouhury, Duke assistant professor of electrical and computer engineering and senior member of the research team, fanned out across Durham, N.C. with their cell phones, collecting data in different types of businesses. So that they would not bias the measurements, the students "mirrored" the actions of selected customers.

"We went to 51 different stores and found that SurroundSense achieved an average accuracy of about 87 percent when all of the sensing capabilities were used," Constandache said.

As more people use the application, it gets "smarter."

"As the system collects and analyzes more and more information about a particular site, the fingerprint becomes that much more precise," said Roy Choudhury. "Not only is the ambience different at different locations, but also can be different at different times at the same location."

SurroundSense collects data at different time points, so it would be able to distinguish a Starbucks store at the morning rush when there are many customers from the slower period in mid-afternoon.

"We believe that SurroundSense is an early step toward a long-standing challenge of improving indoor localization," Roy Choudhury said.

Currently, in order for the phone to collect data, it must be held with the camera facing down, though the researchers are working on strategies for the application to work if the phone is in a pocket, case or handbag. However, as the researchers pointed out, phones are now coming onto the market that are worn on the wrist or around the neck on a necklace.

As in many technical advances, it appears that batteries can be an Achilles' heel. The Duke researchers are now considering the tradeoffs between having the application "on" all the time, which drains the battery faster, or having it take measurements at regular intervals. They are also trying to determine whether the entire application should be housed on the server, the phone, or some combination of the two.

Roy Choudhury's research is supported by the National Science Foundation, Nokia, Verizon and Microsoft Research. Duke undergraduate Martin Azizyan also participated in the project.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>