Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots as teachers

07.01.2013
As part of the EU funded project EMOTE Arvid Kappas, Professor of Psychology at Jacobs University, conducts research on a new generation of robotic tutors with perceptive capabilities to engage in empathic interactions with learners.

These artificial tutors can serve as a complement to traditional teaching. Overall, the EMOTE project aims to research the role of empathic interventions in the process of facilitating the learning progress. The researchers explore as well if and how the exchange of socio-emotional cues with a tutor can create a sense of connection and social bonding and enhance the learning experience. The three-year long project is funded with 2.9 Million Euros.


Robot Nao

“The last few years have seen a rapid increase in research that is now referred to as affective computing – efforts to create technologies that relate better to humans in that they can sense emotional responses, are sensitive to social situations, and express emotions to users in the shape of computer agents, or embodied robots” says Kappas. “The application of such technologies in schools is particularly important to help, not replace teachers. This is about creating a mix of methods where sometimes all of the children might get individualized tutorials at the same time.”

Significant work has been devoted to the design of artificial tutors with human capabilities with the aim of helping to increase the efficiency achieved with a human instructor. Yet, these systems still lack the personal, empathic and human elements that characterize a traditional teacher and fail to engage and motivate students in the same way a human teacher does.

The EMOTE (EMbOdied-perceptive Tutors for Empathy-based learning) project will design, develop and evaluate a new generation of artificial embodied tutors that have perceptive capabilities to engage in empathic interactions with learners in a shared physical space.

The EMOTE consortium brings together experts to carry out interdisciplinary research on affect recognition, learner models, adaptive behavior and embodiment for human-robot interaction in learning environments, grounded in psychological theories of emotion in social interaction and pedagogical models for learning facilitation.

To ground the research in a concrete classroom scenario, the EMOTE project will develop a showcase in the area of geography, focusing on environmental issues. This will enable tutors to be tested in real world school environments in different European countries.

The team at Jacobs University will focus on the assessment of emotional responses in the laboratory and in the class room. They will also study how nonverbal communication, particularly sounds, can be employed to create empathic bonds between the artificial tutors and children. Arvid Kappas is currently involved in two other projects funded by the EU, namely CYBEREMOTIONS, and eCUTE that bridge psychology on the one hand and computer science and engineering on the other.

EMOTE Partners
University of Birmingham, UK
Jacobs University, Germany
INESC-ID-Instituto de Engenharia de Sistemas e Computadores, Portugal
Investigacao e Desenvolvimento em Lisboa , Portugal
Heriot-Watt University, UK
University of Gothenburg, Sweden
YDreams Informatica, Portugal
Contact:
Arvid Kappas | Professor of Psychology
E-Mail: emote@jacobs-university.de | Phone: +49 421 200-3441
or
Dennis Küster | Postdoctoral Fellow
E-Mail: emote@jacobs-university.de | Phone: +49 421 200-3033

Judith Ahues | idw
Further information:
http://www.emote-project.eu/
http://www.jacobs-university.de

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>