Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots with insect brains

03.02.2014
Berlin researchers develop a robot that can learn to navigate through its environment guided by external stimuli. It operating principles? The brain of insects.

Autonomous robots that find their way through unfamiliar terrain? Not so distant future.


The robot in the arena. The small camera films the objects and passes the information to the neural network by wifi. The network processes the data and controls the movement direction of the robot.

Martin Paul Nawrot

Researchers at the Bernstein Fokus Neuronal Basis of Learning, the Bernstein Center Berlin and the Freie Universität Berlin have developed a robot that perceives environmental stimuli and learns to react to them.

The scientists used the relatively simple nervous system of the honeybee as a model for its working principles. To this end, they installed a camera on a small robotic vehicle and connected it to a computer. The computer program replicated in a simplified way the sensorimotor network of the insect brain.

The input data came from the camera that—akin to an eye—received and projected visual information. The neural network, in turn, operated the motors of the robot wheels—and could thus control its motion direction.

The outstanding feature of this artifical mini brain is its ability to learn by simple principles. “The network-controlled robot is able to link certain external stimuli with behavioral rules,” says Professor Martin Paul Nawrot, head of the research team and member of the sub-project „Insect inspired robots: towards an understanding of memory in decision making“ of the Bernstein Focus. “Much like honeybees learn to associate certain flower colors with tasty nectar, the robot learns to approach certain colored objects and to avoid others.”

In the learning experiment, the scientists located the network-controlled robot in the center of a small arena. Red and blue objects were installed on the walls. Once the robot’s camera focused on an object with the desired color—red, for instance—, the scientists triggered a light flash. This signal activated a so-called reward sensor nerve cell in the artificial network. The simultaneous processing of red color and the reward now led to specific changes in those parts of the network, which exercised control over the robot wheels. As a consequence, when the robot “saw” another red object, it started to move toward it. Blue items, in contrast, made it to move backwards. “Just within seconds, the robot accomplishes the task to find an object in the desired color and to approach it,” explains Nawrot. “Only a single learning trial is needed, similar to experimental observations in honeybees.”

The current study has been carried out within an interdisciplinary collaboration between Professor Martin Paul Nawot’s research group “Neuroinformatics” (Institut of Biology), and the group “Intelligent Systems and Robotics” (Institute of Computer Science) headed by Raúl Rojas at Freie Universität Berlin. The scientists are now planning to expand their neural network by supplementing more learning principles. Thus, the mini brain will become even more powerful—and the robot more autonomous.

The Bernstein Focus Neuronal Basis of Learning, sub-project “Insect inspired robots: towards an understanding of memory in decision making” and the Bernstein Center Berlin are part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with more than 170 million Euros. The network is named after the German physiologist Julius Bernstein (1835–1917).

Contact:
Prof. Dr. Martin Paul Nawrot
Freie Universität Berlin
Institute of Biology – Neurobiology
Königin-Luise-Straße 1-3, room 201
14195 Berlin 

Tel: +49 (0)30 838 56692
Email: martin.nawrot@fu-berlin.de
Original publication:
L. I. Helgadóttir, J. Haenicke, T. Landgraf, R. Rojas & M. P. Nawrot (2013): Conditioned behavior in a robot controlled by a spiking neural network. 6th International IEEE/EMBS Conference on Neural Engineering (NER), 891 - 894

http://dx.doi.org/10.1109/NER.2013.6696078

Video:
http://www.youtube.com/watch?v=Qb_R_E4DPYs&feature=youtu.be
Weitere Informationen:
http://www.biologie.fu-berlin.de/neuroinformatik/ Research group „Neuroinformatics“ headed by Martin Paul Nawrot
http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/pmwiki/pmwiki.php Research group „Intelligent Systems and Robotics“ headed by Raúl Rojas
https://www.bccn-berlin.de Bernstein Center Berlin
http://www.fu-berlin.de Freie Universität Berlin
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw
Further information:
http://www.nncn.de

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>