Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots with insect brains

03.02.2014
Berlin researchers develop a robot that can learn to navigate through its environment guided by external stimuli. It operating principles? The brain of insects.

Autonomous robots that find their way through unfamiliar terrain? Not so distant future.


The robot in the arena. The small camera films the objects and passes the information to the neural network by wifi. The network processes the data and controls the movement direction of the robot.

Martin Paul Nawrot

Researchers at the Bernstein Fokus Neuronal Basis of Learning, the Bernstein Center Berlin and the Freie Universität Berlin have developed a robot that perceives environmental stimuli and learns to react to them.

The scientists used the relatively simple nervous system of the honeybee as a model for its working principles. To this end, they installed a camera on a small robotic vehicle and connected it to a computer. The computer program replicated in a simplified way the sensorimotor network of the insect brain.

The input data came from the camera that—akin to an eye—received and projected visual information. The neural network, in turn, operated the motors of the robot wheels—and could thus control its motion direction.

The outstanding feature of this artifical mini brain is its ability to learn by simple principles. “The network-controlled robot is able to link certain external stimuli with behavioral rules,” says Professor Martin Paul Nawrot, head of the research team and member of the sub-project „Insect inspired robots: towards an understanding of memory in decision making“ of the Bernstein Focus. “Much like honeybees learn to associate certain flower colors with tasty nectar, the robot learns to approach certain colored objects and to avoid others.”

In the learning experiment, the scientists located the network-controlled robot in the center of a small arena. Red and blue objects were installed on the walls. Once the robot’s camera focused on an object with the desired color—red, for instance—, the scientists triggered a light flash. This signal activated a so-called reward sensor nerve cell in the artificial network. The simultaneous processing of red color and the reward now led to specific changes in those parts of the network, which exercised control over the robot wheels. As a consequence, when the robot “saw” another red object, it started to move toward it. Blue items, in contrast, made it to move backwards. “Just within seconds, the robot accomplishes the task to find an object in the desired color and to approach it,” explains Nawrot. “Only a single learning trial is needed, similar to experimental observations in honeybees.”

The current study has been carried out within an interdisciplinary collaboration between Professor Martin Paul Nawot’s research group “Neuroinformatics” (Institut of Biology), and the group “Intelligent Systems and Robotics” (Institute of Computer Science) headed by Raúl Rojas at Freie Universität Berlin. The scientists are now planning to expand their neural network by supplementing more learning principles. Thus, the mini brain will become even more powerful—and the robot more autonomous.

The Bernstein Focus Neuronal Basis of Learning, sub-project “Insect inspired robots: towards an understanding of memory in decision making” and the Bernstein Center Berlin are part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with more than 170 million Euros. The network is named after the German physiologist Julius Bernstein (1835–1917).

Contact:
Prof. Dr. Martin Paul Nawrot
Freie Universität Berlin
Institute of Biology – Neurobiology
Königin-Luise-Straße 1-3, room 201
14195 Berlin 

Tel: +49 (0)30 838 56692
Email: martin.nawrot@fu-berlin.de
Original publication:
L. I. Helgadóttir, J. Haenicke, T. Landgraf, R. Rojas & M. P. Nawrot (2013): Conditioned behavior in a robot controlled by a spiking neural network. 6th International IEEE/EMBS Conference on Neural Engineering (NER), 891 - 894

http://dx.doi.org/10.1109/NER.2013.6696078

Video:
http://www.youtube.com/watch?v=Qb_R_E4DPYs&feature=youtu.be
Weitere Informationen:
http://www.biologie.fu-berlin.de/neuroinformatik/ Research group „Neuroinformatics“ headed by Martin Paul Nawrot
http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/pmwiki/pmwiki.php Research group „Intelligent Systems and Robotics“ headed by Raúl Rojas
https://www.bccn-berlin.de Bernstein Center Berlin
http://www.fu-berlin.de Freie Universität Berlin
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw
Further information:
http://www.nncn.de

More articles from Information Technology:

nachricht Engineers develop new methods to speed up simulations in computational grand challenge
27.03.2015 | University of California - San Diego

nachricht Sensor cable monitors fences of all kinds and can even detect low-level drone fly-bys
25.03.2015 | Universität des Saarlandes

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>