Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots, the bizarre and the beautiful

01.10.2008
The future is a foreign country, and nowhere is it more foreign that the designs thrown up by a surge in robotics research. The feverish imagination and creativity of European robot scientists has led to dozens of robot designs, some bizarre, some beautiful, but all are inspired.

In Europe, as the rest of the world, there is a surge in robotics development, reflected in part by the European Network of Robotic Research (EURON), an EU-funded network of excellence that completed its work in 2008.

Robotic designs can take any shape or form and, given the rich and diverse imagination of European scientists and engineers, they often do. Designers take inspiration anywhere they can, from a bare approach that stems from a desire for raw functionality to learning from the biological diversity of nature.

The robots attached to the EURON network (see related articles), for instance, reflect every conceivable type, from the bizarre, to the beautiful, to the truly inspired.

“Nature is a rich source of design ideas,” notes Bruno Siciliano, robotics researcher and dissemination officer for EURON. “Nature has already solved a lot of the problems that robotics researchers encounter, so it is a good place to go for ideas.”

Robot imitating life

Biomimetics, or mimicking biological systems, is a very popular approach in European robotics and has led to a host of unusual designs. Take, for example, the Robot Fish developed by researchers in the UK’s University of Essex. It looks like a real carp and is often mistaken for one.

The fish can move 20 inches a second and, at slower speeds, has a battery that will last five hours. The researchers built three fish as an attraction for the London Aquarium, where they have proved a very popular feature.

But ultimately the design could be used for seabed exploration, to study pipelines for leaks, or even be used for intelligence gathering. The fish can avoid obstacles and swim entirely independently. The researchers hope to increase the robot’s intelligence so that it can hook itself up to a power source when it is time for a recharge.

“Sure, it would be possible to design a standard submarine robot to do similar jobs, but by replicating the designs from nature, researchers can use the advantages of that design. In the case of fish, they move through the water easily, without using much energy. As the design of robot fish improves, it will approach that level of efficiency.”

Snakes and spiders

The Anna Konda is a snake-like robot that can also avoid obstacles and put out fires. The robot moves like a snake using hydraulics and is, the designers believe, both the biggest and strongest snake in the world, and the only one powered by hydraulics.

The advantage of the snake is that it can move through small spaces, it is extremely flexible and a comparatively simple design, though at 3 metres long and 70kg it deserves its moniker as the heftiest of all snakes. It was designed by SINTEF in Norway.

Spiders, too, have provided a rich seam of inspiration for researchers. The Fraunhofer Institute for Intelligent Analysis and Information Systems in Sankt Augustin has designed three, the Amos, Morpheus and TED.

The systems are designed as experimental platforms for neural perception and networking, an essential element of multi-legged systems, but if these problems are solved, they open the prospect of highly mobile, stable robots that can traverse a wide variety of terrains – even stairs – without difficulty.

Games robots play

Robots offer the potential to create new gaming and entertainment platforms, too. One of the most successful commercial robots of all time – Sony’s Aibo – was designed primarily for entertainment.

In the games domain, foozball (table football) has proved a popular choice among researchers. In each case, a robot controls one side of the game and the human player competes against the robot. It is more than just fun, though, because designing an effective robot foozball player demands very rapid processing and fast reaction motors. It is a profoundly difficult problem but, once solved, it can feed into the wider stream of robotics research.

Education toys like the Robota dolls – a family of mini humanoid robots – can engage in complex interaction with humans, involving speech, vision and body imitation. The Robota dolls have been around since 1997, but new prototypes are in constant development at the Ecole Polytechnique Federale de Lausanne in Switzerland.

Finally, a robot that looks perhaps oddest of all, the e-Puck, is a very small, disc-like robot platform designed to allow labs to conduct experiments. And, yes, it looks like a hockey puck.

e-Puck contains sound sensors, proximity sensors, a camera, Bluetooth communication and accelerometer; all in a tiny robot with the same volume as a computer mouse. It is an incredibly flexible platform.

There are many other robot designs under investigation in Europe, including a wide range of robotic vehicles, like cars and airplanes.

One thing is certain, the ceaseless imagination of engineers and scientists will continue to create bizarre and beautiful robotic entities.

Many of the robots mentioned in this article have received funding from various European programmes.

This is the final of a four-part special series of features exploring European robotics research, from humanoids friends, to functional home help, to just plain odd-bots.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90053

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>