Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots, the bizarre and the beautiful

01.10.2008
The future is a foreign country, and nowhere is it more foreign that the designs thrown up by a surge in robotics research. The feverish imagination and creativity of European robot scientists has led to dozens of robot designs, some bizarre, some beautiful, but all are inspired.

In Europe, as the rest of the world, there is a surge in robotics development, reflected in part by the European Network of Robotic Research (EURON), an EU-funded network of excellence that completed its work in 2008.

Robotic designs can take any shape or form and, given the rich and diverse imagination of European scientists and engineers, they often do. Designers take inspiration anywhere they can, from a bare approach that stems from a desire for raw functionality to learning from the biological diversity of nature.

The robots attached to the EURON network (see related articles), for instance, reflect every conceivable type, from the bizarre, to the beautiful, to the truly inspired.

“Nature is a rich source of design ideas,” notes Bruno Siciliano, robotics researcher and dissemination officer for EURON. “Nature has already solved a lot of the problems that robotics researchers encounter, so it is a good place to go for ideas.”

Robot imitating life

Biomimetics, or mimicking biological systems, is a very popular approach in European robotics and has led to a host of unusual designs. Take, for example, the Robot Fish developed by researchers in the UK’s University of Essex. It looks like a real carp and is often mistaken for one.

The fish can move 20 inches a second and, at slower speeds, has a battery that will last five hours. The researchers built three fish as an attraction for the London Aquarium, where they have proved a very popular feature.

But ultimately the design could be used for seabed exploration, to study pipelines for leaks, or even be used for intelligence gathering. The fish can avoid obstacles and swim entirely independently. The researchers hope to increase the robot’s intelligence so that it can hook itself up to a power source when it is time for a recharge.

“Sure, it would be possible to design a standard submarine robot to do similar jobs, but by replicating the designs from nature, researchers can use the advantages of that design. In the case of fish, they move through the water easily, without using much energy. As the design of robot fish improves, it will approach that level of efficiency.”

Snakes and spiders

The Anna Konda is a snake-like robot that can also avoid obstacles and put out fires. The robot moves like a snake using hydraulics and is, the designers believe, both the biggest and strongest snake in the world, and the only one powered by hydraulics.

The advantage of the snake is that it can move through small spaces, it is extremely flexible and a comparatively simple design, though at 3 metres long and 70kg it deserves its moniker as the heftiest of all snakes. It was designed by SINTEF in Norway.

Spiders, too, have provided a rich seam of inspiration for researchers. The Fraunhofer Institute for Intelligent Analysis and Information Systems in Sankt Augustin has designed three, the Amos, Morpheus and TED.

The systems are designed as experimental platforms for neural perception and networking, an essential element of multi-legged systems, but if these problems are solved, they open the prospect of highly mobile, stable robots that can traverse a wide variety of terrains – even stairs – without difficulty.

Games robots play

Robots offer the potential to create new gaming and entertainment platforms, too. One of the most successful commercial robots of all time – Sony’s Aibo – was designed primarily for entertainment.

In the games domain, foozball (table football) has proved a popular choice among researchers. In each case, a robot controls one side of the game and the human player competes against the robot. It is more than just fun, though, because designing an effective robot foozball player demands very rapid processing and fast reaction motors. It is a profoundly difficult problem but, once solved, it can feed into the wider stream of robotics research.

Education toys like the Robota dolls – a family of mini humanoid robots – can engage in complex interaction with humans, involving speech, vision and body imitation. The Robota dolls have been around since 1997, but new prototypes are in constant development at the Ecole Polytechnique Federale de Lausanne in Switzerland.

Finally, a robot that looks perhaps oddest of all, the e-Puck, is a very small, disc-like robot platform designed to allow labs to conduct experiments. And, yes, it looks like a hockey puck.

e-Puck contains sound sensors, proximity sensors, a camera, Bluetooth communication and accelerometer; all in a tiny robot with the same volume as a computer mouse. It is an incredibly flexible platform.

There are many other robot designs under investigation in Europe, including a wide range of robotic vehicles, like cars and airplanes.

One thing is certain, the ceaseless imagination of engineers and scientists will continue to create bizarre and beautiful robotic entities.

Many of the robots mentioned in this article have received funding from various European programmes.

This is the final of a four-part special series of features exploring European robotics research, from humanoids friends, to functional home help, to just plain odd-bots.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90053

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>