Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots, the bizarre and the beautiful

01.10.2008
The future is a foreign country, and nowhere is it more foreign that the designs thrown up by a surge in robotics research. The feverish imagination and creativity of European robot scientists has led to dozens of robot designs, some bizarre, some beautiful, but all are inspired.

In Europe, as the rest of the world, there is a surge in robotics development, reflected in part by the European Network of Robotic Research (EURON), an EU-funded network of excellence that completed its work in 2008.

Robotic designs can take any shape or form and, given the rich and diverse imagination of European scientists and engineers, they often do. Designers take inspiration anywhere they can, from a bare approach that stems from a desire for raw functionality to learning from the biological diversity of nature.

The robots attached to the EURON network (see related articles), for instance, reflect every conceivable type, from the bizarre, to the beautiful, to the truly inspired.

“Nature is a rich source of design ideas,” notes Bruno Siciliano, robotics researcher and dissemination officer for EURON. “Nature has already solved a lot of the problems that robotics researchers encounter, so it is a good place to go for ideas.”

Robot imitating life

Biomimetics, or mimicking biological systems, is a very popular approach in European robotics and has led to a host of unusual designs. Take, for example, the Robot Fish developed by researchers in the UK’s University of Essex. It looks like a real carp and is often mistaken for one.

The fish can move 20 inches a second and, at slower speeds, has a battery that will last five hours. The researchers built three fish as an attraction for the London Aquarium, where they have proved a very popular feature.

But ultimately the design could be used for seabed exploration, to study pipelines for leaks, or even be used for intelligence gathering. The fish can avoid obstacles and swim entirely independently. The researchers hope to increase the robot’s intelligence so that it can hook itself up to a power source when it is time for a recharge.

“Sure, it would be possible to design a standard submarine robot to do similar jobs, but by replicating the designs from nature, researchers can use the advantages of that design. In the case of fish, they move through the water easily, without using much energy. As the design of robot fish improves, it will approach that level of efficiency.”

Snakes and spiders

The Anna Konda is a snake-like robot that can also avoid obstacles and put out fires. The robot moves like a snake using hydraulics and is, the designers believe, both the biggest and strongest snake in the world, and the only one powered by hydraulics.

The advantage of the snake is that it can move through small spaces, it is extremely flexible and a comparatively simple design, though at 3 metres long and 70kg it deserves its moniker as the heftiest of all snakes. It was designed by SINTEF in Norway.

Spiders, too, have provided a rich seam of inspiration for researchers. The Fraunhofer Institute for Intelligent Analysis and Information Systems in Sankt Augustin has designed three, the Amos, Morpheus and TED.

The systems are designed as experimental platforms for neural perception and networking, an essential element of multi-legged systems, but if these problems are solved, they open the prospect of highly mobile, stable robots that can traverse a wide variety of terrains – even stairs – without difficulty.

Games robots play

Robots offer the potential to create new gaming and entertainment platforms, too. One of the most successful commercial robots of all time – Sony’s Aibo – was designed primarily for entertainment.

In the games domain, foozball (table football) has proved a popular choice among researchers. In each case, a robot controls one side of the game and the human player competes against the robot. It is more than just fun, though, because designing an effective robot foozball player demands very rapid processing and fast reaction motors. It is a profoundly difficult problem but, once solved, it can feed into the wider stream of robotics research.

Education toys like the Robota dolls – a family of mini humanoid robots – can engage in complex interaction with humans, involving speech, vision and body imitation. The Robota dolls have been around since 1997, but new prototypes are in constant development at the Ecole Polytechnique Federale de Lausanne in Switzerland.

Finally, a robot that looks perhaps oddest of all, the e-Puck, is a very small, disc-like robot platform designed to allow labs to conduct experiments. And, yes, it looks like a hockey puck.

e-Puck contains sound sensors, proximity sensors, a camera, Bluetooth communication and accelerometer; all in a tiny robot with the same volume as a computer mouse. It is an incredibly flexible platform.

There are many other robot designs under investigation in Europe, including a wide range of robotic vehicles, like cars and airplanes.

One thing is certain, the ceaseless imagination of engineers and scientists will continue to create bizarre and beautiful robotic entities.

Many of the robots mentioned in this article have received funding from various European programmes.

This is the final of a four-part special series of features exploring European robotics research, from humanoids friends, to functional home help, to just plain odd-bots.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90053

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>