Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotics: Gesturing for control

24.05.2012
New intelligent algorithms could help robots to quickly recognize and respond to human gestures. Researchers at A*STAR Institute for Infocomm Research in Singapore have created a computer program which recognises human gestures quickly and accurately, and requires very little training.
Many works of science fiction have imagined robots that could interact directly with people to provide entertainment, services or even health care. Robotics is now at a stage where some of these ideas can be realized, but it remains difficult to make robots easy to operate.

One option is to train robots to recognize and respond to human gestures. In practice, however, this is difficult because a simple gesture such as waving a hand may appear very different between different people. Designers must develop intelligent computer algorithms that can be ‘trained’ to identify general patterns of motion and relate them correctly to individual commands.

Now, Rui Yan and co-workers at the A*STAR Institute for Infocomm Research in Singapore have adapted a cognitive memory model called a localist attractor network (LAN) to develop a new system that recognize gestures quickly and accurately, and requires very little training.

“Since many social robots will be operated by non-expert users, it is essential for them to be equipped with natural interfaces for interaction with humans,” says Yan. “Gestures are an obvious, natural means of human communication. Our LAN gesture recognition system only requires a small amount of training data, and avoids tedious training processes.”

Yan and co-workers tested their software by integrating it with ShapeTape, a special jacket that uses fibre optics and inertial sensors to monitor the bending and twisting of hands and arms. They programmed the ShapeTape to provide data 80 times per second on the three-dimensional orientation of shoulders, elbows and wrists, and applied velocity thresholds to detect when gestures were starting.

In tests, five different users wore the ShapeTape jacket and used it to control a virtual robot through simple arm motions that represented commands such as forward, backwards, faster or slower. The researchers found that 99.15% of gestures were correctly translated by their system. It is also easy to add new commands, by demonstrating a new control gesture just a few times.

The next step in improving the gesture recognition system is to allow humans to control robots without the need to wear any special devices. Yan and co-workers are tackling this problem by replacing the ShapeTape jacket with motion-sensitive cameras.

“Currently we are building a new gesture recognition system by incorporating our method with a Microsoft Kinect camera,” says Yan. “We will implement the proposed system on an autonomous robot to test its usability in the context of a realistic service task, such as cleaning!”

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

References:

Yan, R., Tee, K.P., Chua, Y., Li, H. & Tang, H. Gesture recognition based on localist attractor networks with application to robot control. IEEE Computational Intelligence Magazine 7, 64–74 (2012). (link to original article below)

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>