Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice breakthrough could double wireless capacity with no new towers

07.09.2011
Rice's 'full-duplex' technology requires little hardware, could be ready for 4.5G networks

The days of waiting for smartphones to upload video may be numbered. Rice University engineering researchers have made a breakthrough that could allow wireless phone companies to double throughput on their networks without adding a single cell tower.

Rice's new "full-duplex" technology allows wireless devices like cell phones and electronic tablets to both "talk" and "listen" to wireless cell towers on the same frequency -- something that requires two frequencies today.

"Our solution requires minimal new hardware, both for mobile devices and for networks, which is why we've attracted the attention of just about every wireless company in the world," said Ashutosh Sabharwal, professor of electrical and computer engineering at Rice. "The bigger change will be developing new wireless standards for full-duplex. I expect people may start seeing this when carriers upgrade to 4.5G or 5G networks in just a few years."

In 2010, Sabharwal and Rice colleagues Melissa Duarte and Chris Dick published the first paper showing that full-duplex was possible . That set off a worldwide race to demonstrate that the technology could actually be used in a real network. This summer, Sabharwal and Rice's Achaleshwar Sahai and Gaurav Patel set new performance records with a real-time demo of the technology that produced signal quality at least 10 times better than any previously published result.

"We showed that our approach could support higher throughput and better link reliability than anything else that's been demonstrated, which is a plus for wireless carriers," Sabharwal said. "On the device side, we've shown that we can add full duplex as an additional mode on existing hardware. Device makers love this because real estate inside mobile devices is at a premium, and it means they don't have to add new hardware that only supports full duplex."

To explain why full-duplex wireless was long thought impossible for wireless networks, Sabharwal uses the analogy of two people standing far apart inside an otherwise empty arena. If each shouts to the other at the same time, neither can hear what the other is saying. The easy solution is to have only one person speak at a time, and that's what happens on two-way radios where only one person may speak at a given time. Cell phones achieve two-way communications by using two different frequencies to send and listen.

Rice's team overcame the full-duplex hurdle by employing an extra antenna and some computing tricks. In the shouting analogy, the result is that the shouter cannot hear himself, and therefore hears the only other sound in the arena -- the person shouting from far away.

"We send two signals such that they cancel each other at the receiving antenna -- the device ears," Sabharwal said. "The canceling effect is purely local, so the other node can still hear what we're sending."

He said the cancellation idea is relatively simple in theory and had been proposed some time ago. But no one had figured a way to implement the idea at low cost and without requiring complex new radio hardware.

"We repurposed antenna technology called MIMO, which are common in today's devices," Sabharwal said. "MIMO stands for 'multiple-input multiple-output' and it uses several antennas to improve overall performance. We took advantage of the multiple antennas for our full-duplex scheme, which is the main reason why all wireless carriers are very comfortable with our technology."

Sabharwal said Rice is planning to roll its full-duplex innovations into its "wireless open-access research platform," or WARP. WARP is a collection of programmable processors, transmitters and other gadgets that make it possible for wireless researchers to test new ideas without building new hardware for each test. Sabharwal said adding full-duplex to WARP will allow other researchers to start innovating on top of Rice's breakthrough.

"There are groups that are already using WARP and our open-source software to compete with us," he said. "This is great because our vision for the WARP project is to enable never-before-possible research and to allow anyone to innovate freely with minimal startup effort."

Sabharwal's team has gone one step further and achieved asynchronous full-duplex too – that is one wireless node can start receiving a signal while it's in the midst of transmitting. Asynchronous transmission is import for carriers wishing to maximize traffic on their networks, and Rice's team is the first to demonstrate the technology.

"We've also developed a preliminary theory that explains why our system is working the way that it is," Sabharwal said. "That's also important for carriers and device makers, because engineers aren't likely to implement something like this without a clear understanding of fundamental tradeoffs."

Rice's research has been funded by the National Science Foundation, the Roberto Rocca Education Program and Xilinx Incorporated.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>