Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unveil experimental 36-core chip

24.06.2014

Design lets chip manage local memory stores efficiently using an Internet-style communication network.

The more cores — or processing units — a computer chip has, the bigger the problem of communication between cores becomes. For years, Li-Shiuan Peh, the Singapore Research Professor of Electrical Engineering and Computer Science at MIT, has argued that the massively multicore chips of the future will need to resemble little Internets, where each core has an associated router, and data travels between cores in packets of fixed size.


The MIT researchers' new 36-core chip is "tiled," meaning that it simply repeats the same circuit layout 36 times. Tiling makes multicore chips much easier to design.

Courtesy of the researchers

This week, at the International Symposium on Computer Architecture, Peh’s group unveiled a 36-core chip that features just such a “network-on-chip.” In addition to implementing many of the group’s earlier ideas, it also solves one of the problems that has bedeviled previous attempts to design networks-on-chip: maintaining cache coherence, or ensuring that cores’ locally stored copies of globally accessible data remain up to date.

In today’s chips, all the cores — typically somewhere between two and six — are connected by a single wire, called a bus. When two cores need to communicate, they’re granted exclusive access to the bus.

But that approach won’t work as the core count mounts: Cores will spend all their time waiting for the bus to free up, rather than performing computations.

In a network-on-chip, each core is connected only to those immediately adjacent to it. “You can reach your neighbors really quickly,” says Bhavya Daya, an MIT graduate student in electrical engineering and computer science, and first author on the new paper. “You can also have multiple paths to your destination. So if you’re going way across, rather than having one congested path, you could have multiple ones.”

Get snoopy

One advantage of a bus, however, is that it makes it easier to maintain cache coherence. Every core on a chip has its own cache, a local, high-speed memory bank in which it stores frequently used data. As it performs computations, it updates the data in its cache, and every so often, it undertakes the relatively time-consuming chore of shipping the data back to main memory.

But what happens if another core needs the data before it’s been shipped? Most chips address this question with a protocol called “snoopy,” because it involves snooping on other cores’ communications. When a core needs a particular chunk of data, it broadcasts a request to all the other cores, and whichever one has the data ships it back.

If all the cores share a bus, then when one of them receives a data request, it knows that it’s the most recent request that’s been issued. Similarly, when the requesting core gets data back, it knows that it’s the most recent version of the data.

But in a network-on-chip, data is flying everywhere, and packets will frequently arrive at different cores in different sequences. The implicit ordering that the snoopy protocol relies on breaks down.

Imposing order

Daya, Peh, and their colleagues solve this problem by equipping their chips with a second network, which shadows the first. The circuits connected to this network are very simple: All they can do is declare that their associated cores have sent requests for data over the main network. But precisely because those declarations are so simple, nodes in the shadow network can combine them and pass them on without incurring delays.

Groups of declarations reach the routers associated with the cores at discrete intervals — intervals corresponding to the time it takes to pass from one end of the shadow network to another. Each router can thus tabulate exactly how many requests were issued during which interval, and by which other cores. The requests themselves may still take a while to arrive, but their recipients know that they’ve been issued.

During each interval, the chip’s 36 cores are given different, hierarchical priorities. Say, for instance, that during one interval, both core 1 and core 10 issue requests, but core 1 has a higher priority. Core 32’s router may receive core 10’s request well before it receives core 1’s. But it will hold it until it’s passed along 1’s.

This hierarchical ordering simulates the chronological ordering of requests sent over a bus, so the snoopy protocol still works. The hierarchy is shuffled during every interval, however, to ensure that in the long run, all the cores receive equal weight.

Proof, pudding

Cache coherence in multicore chips “is a big problem, and it’s one that gets larger all the time,” says Todd Austin, a professor of electrical engineering and computer science at the University of Michigan. “Their contribution is an interesting one: They’re saying, ‘Let’s get rid of a lot of the complexity that’s in existing networks. That will create more avenues for communication, and our clever communication protocol will sort out all the details.’ It’s a much simpler approach and a faster approach. It’s a really clever idea.”

“One of the challenges in academia is convincing industry that our ideas are practical and useful,” Austin adds. “They’ve really taken the best approach to demonstrating that, in that they’ve built a working chip. I’d be surprised if these technologies didn’t find their way into commercial products.”

After testing the prototype chips to ensure that they’re operational, Daya intends to load them with a version of the Linux operating system, modified to run on 36 cores, and evaluate the performance of real applications, to determine the accuracy of the group’s theoretical projections. At that point, she plans to release the blueprints for the chip, written in the hardware description language Verilog, as open-source code.

Sarah McDonnell | Eurek Alert!
Further information:
http://newsoffice.mit.edu/2014/researchers-unveil-experimental-36-core-chip-0623

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>