Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Test Mobile Alert System for Cell Phones

05.12.2008
In the first field trial of its kind, Georgia Tech’s Wireless Emergency Communications project tested the Federal Communications Commission’s (FCC) Commercial Mobil Alert System to see how well it met the needs of people with vision and hearing impairments. They found three areas where they will recommend changes to the FCC.

• Although 90 percent of participants who are blind or have low vision found the alert attention signal to be loud enough and long enough to get their attention, only 70 percent of deaf and hard of hearing participants indicated the same regarding the vibrating cadence. Comments regarding the vibrating cadence suggested that it would only be effective if the individual were holding the phone in their hand, but easily missed if in a purse or even in one’s pocket.

• All hearing participants expressed concern that the early part of the message was missed because the tone went too quickly into the 90-character spoken alert, causing the first few words of the message to be missed. The required Commercial Mobile Alert System message format places the event type first (i.e., tornado, flood, etc.) so crucial information may not be heard by blind consumers using text-to-speech software on their mobile phones to access the alerts. Many suggested the need for a header such as “This is a…” to allow for more clarity. Such a header is currently employed by the Emergency Alert System (EAS) messages broadcast on television, radio and cable systems.

• Deaf and hard of hearing participants commented that they would like to see enhancements such as strobe lights, screen flashes and stronger vibrating cadences. While these enhancements can be addressed by cell phone manufacturers, they aren’t required to do so by the FCC.

The tests were conducted on November 12, 2008, with 30 subjects. The results will be presented to the FCC and others during the State of Technology conference in September.

The FCC established the Commercial Mobile Alert System in 2008 to provide a framework for commercial mobile service providers to voluntarily transmit emergency alerts to their subscribers. The Rehabilitation Engineering Research Center for Wireless Technologies’ Wireless Emergency Communications project has been developing software and conducting field tests on how to make the emergency alert system accessible for people with sensory disabilities who use mobile devices.

Tech’s Wireless Emergency Communications project received additional federal funding to field test the provisions of Commercial Mobile Alert System that affect accessibility, such as the limitation of 90 characters, not permitting URLs, and volume limits including specific vibrating cadences and alert tones. By conducting this field test, they will provide the FCC and the wireless industry with concrete evidence from the perspective of end-users on how the Commercial Mobile Alert System would be better able to serve the specific needs of people with sensory disabilities. Most recommendations, however, would render the system more effective for all consumers. For example, participants suggested repeating the attention signal and vibrating cadences in intervals until they are shut off by the user to ensure the receipt of the alert by an individual who is away from their phone, asleep, driving or unable to hear or see.

The field test recruited participants from the Atlanta Area School for the Deaf, Atlanta Public School System, the Wireless Rehabilitation Engineering Research Center Consumer Advisory Network and the Georgia Radio Reading Service (GaRRS). Subjects were as diverse in their sensory limitations as they were in their technical skill level, ranging from those who were fully deaf or fully blind to those with enhanced hearing (hearing aid/cochlear implants) or enhanced vision (glasses/contacts).

Though field test participant’s names are usually held in the strictest confidence, one participant agreed to go on the record.

“I applaud PBA and Georgia Tech for their effort in bringing this very important issue to the public,” said Georgia State Representative Bob Smith. “We must continue to make this a priority, to seek innovative and creative ways to notify people with disabilities and tirelessly work to improve and perfect the notification system. It is paramount that Georgians are aware that people with various disabilities, more than any time in our history, need to be informed of catastrophic events.”

This is the second field test hosted by project partner Public Broadcasting Atlanta. PBA recognized the importance of this community project and how it aligned with its vision of implementing a Local Education Network System (LENS) capable of convening individuals, organizations and communities. MetroCast Atlanta, a component of LENS, would serve as an emergency information network for schools, city officials and citizens in the event of natural or terrorist disaster.

The mobile devices and cellular service used in this field test were the result of a generous donation from WEC industry partner AT&T. For more information on WEC, go to www.wirelessrerc.org. Funding for the CMAS parameter field test was made possible by the U.S. Department of Education’s National Institute on Disability and Rehabilitation Research, grant # H133E060061.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu
http://www.wirelessrerc.org

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>