Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Test Mobile Alert System for Cell Phones

05.12.2008
In the first field trial of its kind, Georgia Tech’s Wireless Emergency Communications project tested the Federal Communications Commission’s (FCC) Commercial Mobil Alert System to see how well it met the needs of people with vision and hearing impairments. They found three areas where they will recommend changes to the FCC.

• Although 90 percent of participants who are blind or have low vision found the alert attention signal to be loud enough and long enough to get their attention, only 70 percent of deaf and hard of hearing participants indicated the same regarding the vibrating cadence. Comments regarding the vibrating cadence suggested that it would only be effective if the individual were holding the phone in their hand, but easily missed if in a purse or even in one’s pocket.

• All hearing participants expressed concern that the early part of the message was missed because the tone went too quickly into the 90-character spoken alert, causing the first few words of the message to be missed. The required Commercial Mobile Alert System message format places the event type first (i.e., tornado, flood, etc.) so crucial information may not be heard by blind consumers using text-to-speech software on their mobile phones to access the alerts. Many suggested the need for a header such as “This is a…” to allow for more clarity. Such a header is currently employed by the Emergency Alert System (EAS) messages broadcast on television, radio and cable systems.

• Deaf and hard of hearing participants commented that they would like to see enhancements such as strobe lights, screen flashes and stronger vibrating cadences. While these enhancements can be addressed by cell phone manufacturers, they aren’t required to do so by the FCC.

The tests were conducted on November 12, 2008, with 30 subjects. The results will be presented to the FCC and others during the State of Technology conference in September.

The FCC established the Commercial Mobile Alert System in 2008 to provide a framework for commercial mobile service providers to voluntarily transmit emergency alerts to their subscribers. The Rehabilitation Engineering Research Center for Wireless Technologies’ Wireless Emergency Communications project has been developing software and conducting field tests on how to make the emergency alert system accessible for people with sensory disabilities who use mobile devices.

Tech’s Wireless Emergency Communications project received additional federal funding to field test the provisions of Commercial Mobile Alert System that affect accessibility, such as the limitation of 90 characters, not permitting URLs, and volume limits including specific vibrating cadences and alert tones. By conducting this field test, they will provide the FCC and the wireless industry with concrete evidence from the perspective of end-users on how the Commercial Mobile Alert System would be better able to serve the specific needs of people with sensory disabilities. Most recommendations, however, would render the system more effective for all consumers. For example, participants suggested repeating the attention signal and vibrating cadences in intervals until they are shut off by the user to ensure the receipt of the alert by an individual who is away from their phone, asleep, driving or unable to hear or see.

The field test recruited participants from the Atlanta Area School for the Deaf, Atlanta Public School System, the Wireless Rehabilitation Engineering Research Center Consumer Advisory Network and the Georgia Radio Reading Service (GaRRS). Subjects were as diverse in their sensory limitations as they were in their technical skill level, ranging from those who were fully deaf or fully blind to those with enhanced hearing (hearing aid/cochlear implants) or enhanced vision (glasses/contacts).

Though field test participant’s names are usually held in the strictest confidence, one participant agreed to go on the record.

“I applaud PBA and Georgia Tech for their effort in bringing this very important issue to the public,” said Georgia State Representative Bob Smith. “We must continue to make this a priority, to seek innovative and creative ways to notify people with disabilities and tirelessly work to improve and perfect the notification system. It is paramount that Georgians are aware that people with various disabilities, more than any time in our history, need to be informed of catastrophic events.”

This is the second field test hosted by project partner Public Broadcasting Atlanta. PBA recognized the importance of this community project and how it aligned with its vision of implementing a Local Education Network System (LENS) capable of convening individuals, organizations and communities. MetroCast Atlanta, a component of LENS, would serve as an emergency information network for schools, city officials and citizens in the event of natural or terrorist disaster.

The mobile devices and cellular service used in this field test were the result of a generous donation from WEC industry partner AT&T. For more information on WEC, go to www.wirelessrerc.org. Funding for the CMAS parameter field test was made possible by the U.S. Department of Education’s National Institute on Disability and Rehabilitation Research, grant # H133E060061.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu
http://www.wirelessrerc.org

More articles from Information Technology:

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

nachricht Ahead of the Curve
27.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>