Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers propose a better way to make sense of 'Big Data'

19.02.2014
New application of a classic concept challenges the latest statistical tools

Big Data is everywhere, and we are constantly told that it holds the answers to almost any problem we want to solve. Companies collect information on how we shop, doctors and insurance companies gather our medical test results, and governments compile logs of our phone calls and emails. In each instance, the hope is that critical insights are hidden deep within massive amounts of information, just waiting to be discovered.


Two researchers at Cold Spring Harbor Laboratory challenge the most recent advances in this Big Data analysis, using a classic mathematical concept to tackle the outstanding problems in this field. Mutual information is able to uncover patterns in large lists of numbers, revealing entirely new, unexpected patterns.

Credit: extradeda/Shutterstock

But simply having lots of data is not the same as understanding it. Increasingly, new mathematical tools are needed to extract meaning from enormous data sets. In work published online today, two researchers at Cold Spring Harbor Laboratory (CSHL) now challenge the most recent advances in this field, using a classic mathematical concept to tackle the outstanding problems in Big Data analysis.

What does it mean to analyze Big Data? A major goal is to find patterns between seemingly unrelated quantities, such as income and cancer rates. Many of the most common statistical tools are only able to detect patterns if the researcher has some expectation about the relationship between the quantities. Part of the lure of Big Data is that it may reveal entirely new, unexpected patterns. Therefore, scientists and researchers have worked to develop statistical methods that will uncover these novel relationships.

In 2011, a distinguished group of researchers from Harvard University published a highly influential paper in the journal Science that advanced just such a tool. But in a paper published today in Proceedings of the National Academy of Sciences, CSHL Quantitative Biology Fellow Justin Kinney and CSHL Assistant Professor Gurinder "Mickey" Atwal demonstrate that this new tool is critically flawed. "Their statistical tool does not have the mathematical properties that were claimed," says Kinney.

Kinney and Atwal show that the correct tool was hiding in plain sight all along. The solution, they say, is a well known mathematical measure called "mutual information," first described in 1948. It was initially used to quantify the amount of information that could be transmitted electronically through a telephone cable; the concept now underlies the design of the world's telecommunications infrastructure. "What we've found in our work is that this same concept can also be used to find patterns in data," Kinney explains.

Applied to Big Data, mutual information is able to reveal patterns in large lists of numbers. For instance, it can be used to analyze patterns in data sets on the numerous bacterial species that help us digest food. "This particular tool is perfect for finding patterns in studies of the human microbiome, among many other things," Kinney says.

Importantly, mutual information provides a way of identifying all types of patterns within the data without reliance upon any prior assumptions. "Our work shows that mutual information very naturally solves this critical problem in statistics," Kinney says. "This beautiful mathematical concept has the potential to greatly benefit modern data analysis, in biology and in biology and many other important fields.

The research described here was supported by the Simons Center for Quantitative Biology at Cold Spring Harbor Laboratory.

"Equitability, mutual information, and the maximal information coefficient" appears online in PNAS on February 17, 2014. The authors are: Justin Block Kinney and Gurinder Singh Atwal. The paper can be obtained online at: http://www.pnas.org/content/early/2014/02/14/1309933111.abstract

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center.

Jaclyn Jansen | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>