Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers propose a better way to make sense of 'Big Data'

19.02.2014
New application of a classic concept challenges the latest statistical tools

Big Data is everywhere, and we are constantly told that it holds the answers to almost any problem we want to solve. Companies collect information on how we shop, doctors and insurance companies gather our medical test results, and governments compile logs of our phone calls and emails. In each instance, the hope is that critical insights are hidden deep within massive amounts of information, just waiting to be discovered.


Two researchers at Cold Spring Harbor Laboratory challenge the most recent advances in this Big Data analysis, using a classic mathematical concept to tackle the outstanding problems in this field. Mutual information is able to uncover patterns in large lists of numbers, revealing entirely new, unexpected patterns.

Credit: extradeda/Shutterstock

But simply having lots of data is not the same as understanding it. Increasingly, new mathematical tools are needed to extract meaning from enormous data sets. In work published online today, two researchers at Cold Spring Harbor Laboratory (CSHL) now challenge the most recent advances in this field, using a classic mathematical concept to tackle the outstanding problems in Big Data analysis.

What does it mean to analyze Big Data? A major goal is to find patterns between seemingly unrelated quantities, such as income and cancer rates. Many of the most common statistical tools are only able to detect patterns if the researcher has some expectation about the relationship between the quantities. Part of the lure of Big Data is that it may reveal entirely new, unexpected patterns. Therefore, scientists and researchers have worked to develop statistical methods that will uncover these novel relationships.

In 2011, a distinguished group of researchers from Harvard University published a highly influential paper in the journal Science that advanced just such a tool. But in a paper published today in Proceedings of the National Academy of Sciences, CSHL Quantitative Biology Fellow Justin Kinney and CSHL Assistant Professor Gurinder "Mickey" Atwal demonstrate that this new tool is critically flawed. "Their statistical tool does not have the mathematical properties that were claimed," says Kinney.

Kinney and Atwal show that the correct tool was hiding in plain sight all along. The solution, they say, is a well known mathematical measure called "mutual information," first described in 1948. It was initially used to quantify the amount of information that could be transmitted electronically through a telephone cable; the concept now underlies the design of the world's telecommunications infrastructure. "What we've found in our work is that this same concept can also be used to find patterns in data," Kinney explains.

Applied to Big Data, mutual information is able to reveal patterns in large lists of numbers. For instance, it can be used to analyze patterns in data sets on the numerous bacterial species that help us digest food. "This particular tool is perfect for finding patterns in studies of the human microbiome, among many other things," Kinney says.

Importantly, mutual information provides a way of identifying all types of patterns within the data without reliance upon any prior assumptions. "Our work shows that mutual information very naturally solves this critical problem in statistics," Kinney says. "This beautiful mathematical concept has the potential to greatly benefit modern data analysis, in biology and in biology and many other important fields.

The research described here was supported by the Simons Center for Quantitative Biology at Cold Spring Harbor Laboratory.

"Equitability, mutual information, and the maximal information coefficient" appears online in PNAS on February 17, 2014. The authors are: Justin Block Kinney and Gurinder Singh Atwal. The paper can be obtained online at: http://www.pnas.org/content/early/2014/02/14/1309933111.abstract

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center.

Jaclyn Jansen | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>