Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers invent “acoustic-assisted” magnetic information storage

15.02.2013
Electrical engineers at Oregon State University have discovered a way to use high- frequency sound waves to enhance the magnetic storage of data, offering a new approach to improve the data storage capabilities of a multitude of electronic devices around the world.
The technology, called acoustic-assisted magnetic recording, has been presented at a professional conference, and a patent application was filed this week.

Magnetic storage of data is one of the most inexpensive and widespread technologies known, found in everything from computer hard drives to the magnetic strip on a credit card. It’s permanent, dependable and cheap. However, long-term reliability of stored data becomes an increasing concern as the need grows to pack more and more information in storage devices, experts say.

“We’re near the peak of what we can do with the technology we now use for magnetic storage,” said Pallavi Dhagat, an associate professor in the OSU School of Electrical Engineering and Computer Science. “There’s always a need for approaches that could store even more information in a smaller space, cost less and use less power.”

That can be possible, scientists say, if the magnetic materials are temporarily heated, even for an instant, so they can become momentarily less stiff and more data can be stored at a particular spot. This has proven difficult to do, because the heating tends to spread beyond where it is wanted and the technology involves complex integration of optics, electronics and magnetics.

With the new approach, ultrasound is directed at a highly specific location while data is being stored, creating elasticity that literally allows a tiny portion of the material to bend or stretch. It immediately resumes its shape when the ultrasound waves stop. The data can be stored reliably without the concerns around heating.

It should also be possible to create a solid state memory device with no moving parts to implement this technology, researchers said. Unlike conventional hard-disk drive storage, solid state memory would offer durability.

These advances were recently reported at the 12th Joint MMM/Intermag Conference in Chicago.

“This technology should allow us to marry the benefits of solid state electronics with magnetic recording, and create non-volatile memory systems that store more data in less space, using less power,” said Albrecht Jander, also an associate professor of electrical engineering and collaborator on the research.

This approach might work with materials already being used in magnetic recordings, or variations on them, the investigators said. Continued research will explore performance, materials and cost issues.

Advances in data storage are part of what has enabled the enormous advance in high technology systems in recent decades.

A disk drive at the dawn of this era in the 1950s had five megabyte capacity, cost today’s equivalent of $160,000, weighed about a ton, had to be moved with a forklift and was so big it had to be shipped on a large cargo aircraft. Experts at the time said they could have built something with more storage capacity, but they could not envision why anyone would want it, or buy it.

A system today that stores 500 gigabytes, or 100,000 times as much information, is found routinely in laptop computers that cost a few hundred dollars.

About the OSU College of Engineering: The OSU College of Engineering is among the nation’s largest and most productive engineering programs. In the past six years, the College has more than doubled its research expenditures to $27.5 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

Pallavi Dhagat | EurekAlert!
Further information:
http://www.oregonstate.edu/

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>