Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Improving GPS Accuracy in the 3rd Dimension

19.08.2011
Researchers who are working to fix global positioning system (GPS) errors have devised software to take a more accurate measurement of altitude – particularly in mountainous areas.

The software is still under development, but in initial tests it enabled centimeter-scale GPS positioning – including altitude – as often as 97 percent of the time.

Researchers hope the software will help to improve the vertical accuracy of measurements in potentially hazardous regions at high altitudes, such as areas of soft, loose land that may be prone to landslides. They also claim that their software could be used to measure how quickly glaciers at high altitudes are melting.

The GPS is most commonly known for its ability to provide on-the-spot locations for drivers, but this application is just one of many possible uses, explained Dorota Grejner-Brzezinska, professor of civil and environmental engineering and geodetic science at Ohio State University. As the level of GPS precision increases, so do potential applications for scientific research.

While drivers are generally concerned with tracking their own location in two dimensions on the earth’s surface, the third dimension of altitude has always been available through GPS – just with lower accuracy than that of the horizontal coordinates.

Recently, Grejner-Brzezinska and her colleagues from the University of Warmia and Mazury in Poland have developed software that will allow GPS to relay locations to within a few centimeters’ accuracy, including altitude. While this high level of precision is not necessary for driving directions, it is necessary for recognizing small shifts in topsoil that may lead to dangerously destructive landslides.

She explained that a lot is going on behind the scenes during a typical use of GPS.

GPS satellites transmit information in the form of radio waves to the GPS receiver held by the user. At the same time, the signals must also travel to at least one other ground-based receiver to obtain a location reference, which allows the user’s receiver in turn to accurately calculate its own position in 3D. Before the satellite signals reach the receivers, they must travel through Earth’s atmosphere, which results in time delays that affect accuracy.

When the user’s receiver and the reference receiver reside at drastically different altitudes, however, each location experiences different amounts of time delay, which complicates matters even further. So, in mountainous regions where height differences can vary greatly over a short distance, acquiring the altitude of locations to within a few centimeters is difficult.

“Time is the heart that drives GPS, so it is important that we have a proficient method that accounts for delays from earth’s atmospheric layers,” said Grejner-Brzezinska. “It would be ideal for all GPS signals to travel in a straight line directly to their destination, but due to electron interaction and refraction in the lower atmosphere, the signal’s path is far from straight,” she continued.

Electron interaction and tropospheric refraction effectively re-route the GPS signal, which means that the signal travels an extra distance and requires extra time, said Grejner-Brzezinska.

She and her colleagues looked specifically at troposphere delays – those caused by the lowest level of the atmosphere. Their study can be found in a recent issue of the journal Measurement Science and Technology.

In the past, scientists have tried to account for troposphere delays by using basic models of Earth’s atmosphere, said Grejner-Brzezinska. But these models may not fully account for changes in the weather or temperature, which can have a significant effect on the amount of interference the GPS signals experience on their way down to earth.

Not only weather and temperature, but also the height difference between two stations can greatly affect the accuracy of a GPS-based height determination.

Using ground station receivers located in the Carpathian Mountains in Poland – a region known for its steep slopes – the researchers collected GPS information over a 13-hour period.

They looked at two pairs of receivers with different height changes. The first pair was located 72 kilometers apart and had a height difference of 32 meters. The second pair was 66 kilometers apart with a total height difference of 380 meters.

“We figured that the easiest scenario would be provided by the receivers with 32-meter height difference, and the most challenging one with a height difference of 380 meters,” said Grejner-Brzezinska.

Using processing software developed originally in Grejner-Brzezinska’s lab at Ohio State, and further expanded by her research collaborators at the University of Warmia and Mazury in Poland, the researchers applied three different methods to measure GPS accuracy for the receivers.

The results showed that, out of the three methods of handling tropospheric delay in GPS measurements that were tested, there was one that provided an accurate location, including the height of the receivers, 97 percent of the time.

“Of the three methods we tested, the third and most accurate was also the most complicated,” said Grejner-Brzezinska. “This method was developed by our team, and required knowledge of three or four reference stations in order to perform the calculations properly.”

The other two methods did not require the use of multiple reference points – just a single one – but their levels of accuracy did not match the third method’s positioning capabilities.

Further testing will follow. But this early study shows that GPS accuracy for altitude estimation can be improved, and may lead to the precision estimates that researchers need to analyze, for example, the stability of mountaintops and glaciers with 10-minute temporal resolution.

This research was funded by the European Space Agency Plan for European Cooperating States project and a grant from the Polish Ministry of Science and Higher Education.

Grejner-Brzezinska’s collaborators at the University of Warmia and Mazury include Pawel Wielgosz, Slawomir Cellmer and Zofia Rzepecka.

Contact: Dorota Grejner-Brzezinska, 614-292-8787; dbrzezinska@osu.edu
Media Contact: Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Written by Jessica Orwig.

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>