Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers give high marks to new technology for fingerprint identification

Overworked crime scene investigators can take heart at the results of recent tests at the National Institute of Standards and Technology (NIST) of new technologies that automate the manual portion of latent fingerprint identification.

Prototype systems evaluated by NIST performed surprisingly well for a developing technology: half of the prototypes were accurate at least 80 percent of the time and one had a near perfect score. Automating the manual portion of the work frees up time for trained examiners to spend time on very difficult images that the software has little hope of processing.

As any TV crime series fan knows, latent prints are left behind any time someone touches something. While ubiquitous, “latents” often include only part of the finger—maybe just a few ridges—and sometimes are left on textured materials, adding even more challenges.

To identify the owner, a fingerprint examiner must first carefully mark the distinguishing features of the full or partial print, beginning with the positions where ridges end or branch. Then the latent is entered into a counter-terrorist or law enforcement identification system such as the Federal Bureau of Investigation’s Integrated Automated Fingerprint Identification System (IAFIS). The FBI’s system compares latents against the 55 million sets of ten-print cards taken at arrest.

The IAFIS system was a significant advance. Now the manual, mark-up portion of latent fingerprint identification is being automated with an emerging technology called Automatic Feature Extraction and Matching (AFEM). NIST biometric researchers assessed prototypes that eight vendors are developing.

In the evaluation, researchers used a data set of 835 latent prints and 100,000 fingerprints that have been used in real case examinations.

The AFEM software extracted the distinguishing features of the latent prints, then compared them against 100,000 fingerprints. For each print the software provided a list of 50 candidates that the fingerprint specialists compared by hand. Most identities were found within the top 10.

In order of performance, the most accurate prototypes were furnished by NEC Corp., Cogent Inc., SPEX Forensics, Inc., Motorola, Inc. and L1 Identity Solutions. Results ranged from nearly 100 percent for the most accurate product to around 80 percent for the last three listed.

The evaluations also showed a strong correlation between the number of distinguishing features in a latent print and its ability to match for all prototypes and that the quality of the image data strongly influences accuracy.

“While the testing has demonstrated accuracy beyond pre-test expectations, the potential of the technology remains undefined and further testing is required,” said computer scientist Patrick Grother. “In the future we will look at lower quality latent images to understand the technology’s limitations and we will support development of a standardized feature set that extends the one currently used by examiners for searches.”

The research was funded by the Department of Homeland Security’s Science and Technology Directorate and the FBI’s Criminal Justice Information Services Division. The report, An Evaluation of Automated Latent Fingerprint Identification Technologies, is available at

Evelyn Brown | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>