Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers develop key component for terahertz wireless


Terahertz radiation could one day provide the backbone for wireless systems that can deliver data up to one hundred times faster than today's cellular or Wi-Fi networks. But there remain many technical challenges to be solved before terahertz wireless is ready for prime time.

Researchers from Brown University have taken a major step toward addressing one of those challenges. They've developed what they believe to be the first system for multiplexing terahertz waves. Multiplexers are devices that enable separate streams of data to travel through a single medium. It's the technology that makes it possible for a single cable to carry multiple TV channels or for a fiber optic line to carry thousands of phone calls at the same time.

All communications networks need some form of multiplexing -- the ability to send multiple data streams through a single medium. Researchers from Brown have used a leaky wave antenna to separate terahertz waves by frequency. The work provides a viable multiplexing and demultiplexing strategy for future terahertz data networks, which have the potential to deliver data many times faster than today's cellular or Wi-Fi networks.

Credit: Mittleman Lab / Brown University

"Any terahertz communications application is going to need some form of multiplexing and demultiplexing," said Daniel Mittleman, professor of engineering at Brown and senior author of a paper describing the new device. "This is, to our knowledge, the first time anyone has demonstrated a viable strategy for multiplexing in the terahertz range."

The research was published September 14 in Nature Photonics.

Today's cellular and Wi-Fi networks rely on microwaves to carry voice conversations and data. But the increasing demands for data transfer are quickly becoming more than microwaves can handle. Terahertz waves have a much higher frequency and therefore more potential bandwidth. Scientists and engineers have only recently begun exploring the potential of terahertz waves, however. As a result, many of the components for a terahertz wireless network -- including multiplexers -- have not yet been developed.

The multiplexer that Mittleman and his colleagues have been working on makes use of what's known as a leaky wave antenna. In this case, the antenna is made from two metal plates placed in parallel to form a waveguide. One of the plates has a small slit in it. As terahertz waves travel down the waveguide, some of the radiation leaks out of the slit. It turns out that terahertz waves leak out a different angles depending on their frequency.

"That means if you put in 10 different frequencies between the plates -- each of them potentially carrying a unique data stream -- they'll come out at 10 different angles," Mittleman said. "Now you've separated them and that's demultiplexing."

On the other end, a receiver could be tuned to accept radiation at a particular angle, thus receiving data from only one stream.

"We think it's definitely a reasonable solution to meet the needs of a terahertz communication network," said Nicholas Karl, a graduate student at Brown and the paper's lead author. Karl led the experiments on the device with fellow graduate student Robert McKinney. Other authors on the study are Rajind Mendis, a research professor at Brown, and Yasuaki Monnai from Keio University in Tokyo.

One of the advantages to the approach, the researchers say, is that by adjusting the distance between the plates, it's possible to adjust the spectrum bandwidth that can be allocated to each channel. That could be especially useful when such a device is deployed for use in a data network.

"For example, if one user suddenly needs a ton of bandwidth, you can take it from others on the network who don't need as much just by changing the plate spacing at the right location," Mittleman said.

The group plans to continue its work to refine the device. A research group from Osaka University is collaborating with Mittleman's group to implement the device in a prototype terahertz network they're building.

"This is a first-generation, proof-of-concept device," Karl said. "There are still things we can do to improve it and we'll continue to study it."

Mittleman hopes that the work will challenge other researchers to start developing components for terahertz networks.

"The biggest impact this may have is it may just be the kick that people need to start thinking about this issue," Mittleman said. "That means they'll start coming up with clever ideas that are entirely different from this one."


The work was supported by the National Science Foundation and the W.M. Keck Foundation.

Note to Editors:

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>