Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop key component for terahertz wireless

15.09.2015

Terahertz radiation could one day provide the backbone for wireless systems that can deliver data up to one hundred times faster than today's cellular or Wi-Fi networks. But there remain many technical challenges to be solved before terahertz wireless is ready for prime time.

Researchers from Brown University have taken a major step toward addressing one of those challenges. They've developed what they believe to be the first system for multiplexing terahertz waves. Multiplexers are devices that enable separate streams of data to travel through a single medium. It's the technology that makes it possible for a single cable to carry multiple TV channels or for a fiber optic line to carry thousands of phone calls at the same time.


All communications networks need some form of multiplexing -- the ability to send multiple data streams through a single medium. Researchers from Brown have used a leaky wave antenna to separate terahertz waves by frequency. The work provides a viable multiplexing and demultiplexing strategy for future terahertz data networks, which have the potential to deliver data many times faster than today's cellular or Wi-Fi networks.

Credit: Mittleman Lab / Brown University

"Any terahertz communications application is going to need some form of multiplexing and demultiplexing," said Daniel Mittleman, professor of engineering at Brown and senior author of a paper describing the new device. "This is, to our knowledge, the first time anyone has demonstrated a viable strategy for multiplexing in the terahertz range."

The research was published September 14 in Nature Photonics.

Today's cellular and Wi-Fi networks rely on microwaves to carry voice conversations and data. But the increasing demands for data transfer are quickly becoming more than microwaves can handle. Terahertz waves have a much higher frequency and therefore more potential bandwidth. Scientists and engineers have only recently begun exploring the potential of terahertz waves, however. As a result, many of the components for a terahertz wireless network -- including multiplexers -- have not yet been developed.

The multiplexer that Mittleman and his colleagues have been working on makes use of what's known as a leaky wave antenna. In this case, the antenna is made from two metal plates placed in parallel to form a waveguide. One of the plates has a small slit in it. As terahertz waves travel down the waveguide, some of the radiation leaks out of the slit. It turns out that terahertz waves leak out a different angles depending on their frequency.

"That means if you put in 10 different frequencies between the plates -- each of them potentially carrying a unique data stream -- they'll come out at 10 different angles," Mittleman said. "Now you've separated them and that's demultiplexing."

On the other end, a receiver could be tuned to accept radiation at a particular angle, thus receiving data from only one stream.

"We think it's definitely a reasonable solution to meet the needs of a terahertz communication network," said Nicholas Karl, a graduate student at Brown and the paper's lead author. Karl led the experiments on the device with fellow graduate student Robert McKinney. Other authors on the study are Rajind Mendis, a research professor at Brown, and Yasuaki Monnai from Keio University in Tokyo.

One of the advantages to the approach, the researchers say, is that by adjusting the distance between the plates, it's possible to adjust the spectrum bandwidth that can be allocated to each channel. That could be especially useful when such a device is deployed for use in a data network.

"For example, if one user suddenly needs a ton of bandwidth, you can take it from others on the network who don't need as much just by changing the plate spacing at the right location," Mittleman said.

The group plans to continue its work to refine the device. A research group from Osaka University is collaborating with Mittleman's group to implement the device in a prototype terahertz network they're building.

"This is a first-generation, proof-of-concept device," Karl said. "There are still things we can do to improve it and we'll continue to study it."

Mittleman hopes that the work will challenge other researchers to start developing components for terahertz networks.

"The biggest impact this may have is it may just be the kick that people need to start thinking about this issue," Mittleman said. "That means they'll start coming up with clever ideas that are entirely different from this one."

###

The work was supported by the National Science Foundation and the W.M. Keck Foundation.

Note to Editors:

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!

More articles from Information Technology:

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

nachricht Ahead of the Curve
27.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>