Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Can Detect Tunnel Excavation With Fiber Optic Cables

13.01.2009
With the kind of fiber optic cables used in telecommunications and cable television systems, Technion scientists have found a way to detect and pinpoint the excavation of tunnels, such as those used for smuggling weapons into Gaza. The system can locate even narrow tunnels at depths greater than 60 feet.

With the same type of fiber optic cables used in telecommunications systems, researchers from the Technion-Israel Institute of Technology have developed a way to detect and pinpoint the excavation of tunnels during times of war, such as those used for smuggling weapons into Gaza. The findings will be presented at the Defense, Security and Sensing Conference of SPIE (an international society advancing light-based research) in April 2009 in Orlando, Florida.

Principal researchers Dr. Assaf Klar and Dr. Raphael Linker, both of the Technion Faculty of Civil and Environmental Engineering, say the system is capable of locating even narrow tunnels at depths greater than 60 feet with a limited number of false alarms.

“Tunnel excavation is accompanied by the release of stresses that cause permanent – though very tiny – displacements and strains in the ground,” says Dr. Klar. “If you can measure these strains in the soil with sensitive equipment, you can find the tunnel’s location.” Tunnel excavation has a distinctive signal that is very different from those of disturbances, he adds.

The research lays the groundwork for the initial stages of an underground fence based on an existing technology called BOTDR (Brillouin optical time domain reflectometry) that makes it possible to measure fiber distortion along 15 miles using one device.

The proposed system is based on “wavelet decomposition” of the continuous BOTDR signal, a process that breaks down the signal profile into simpler shapes, and then filters out any irrelevant signals (“noise”). The signals that remain are then characterized by a neural network that has been trained to locate tunnels using computer simulation of tens of thousands of profiles, including disturbances not related to tunneling (examples include raindrops).

“The ability of the BOTDR approach to supply a continuous profile of soil distortions along the fiber optic line – and the ability of the neural network to identify the relevant profile that characterizes the excavation – are the keys to the system’s success,” says Dr. Linker.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country’s winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with 22 offices around the country.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>