Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Demonstrate a Better Way for Computers to ‘See’

04.12.2009
What’s new: Taking inspiration from genetic screening techniques, researchers from MIT and Harvard have demonstrated a way to build better artificial visual systems with the help of low-cost, high-performance gaming hardware.

Why it matters: The neural processing involved in visually recognizing even the simplest object in a natural environment is profound---and profoundly difficult to mimic. Neuroscientists have made broad advances in understanding the visual system, but much of the inner workings of biologically-based systems remain a mystery.

Using Graphics Processing Units (GPUs) -- the same technology video game designers use to render life-like graphics – MIT and Harvard researchers are now making progress faster than ever before. “We made a powerful computing system that delivers over hundred fold speed-ups relative to conventional methods,” said Nicolas Pinto, a PhD candidate in James DiCarlo’s lab at the McGovern Institute for Brain Research at MIT. “With this extra computational power, we can discover new vision models that traditional methods miss.” Pinto co-authored the PLoS study with David Cox of the Visual Neuroscience Group at the Rowland Institute at Harvard.

How they did it: Harnessing the processing power of dozens of high-performance NVIDIA graphics cards and PlayStation 3s gaming devices, the team designed a high-throughput screening process to tease out the best parameters for visual object recognition tasks. The resulting model outperformed a crop of state-of-the-art vision systems across a range of tests -- more accurately identifying a range of objects on random natural backgrounds with variation in position, scale, and rotation. Had the team used conventional computational tools, the one-week screening phase would have taken over two years to complete.

Next steps: The researchers say that their high-throughput approach could be applied to other areas of computer vision, such as face identification, object tracking, pedestrian detection for automotive applications, and gesture and action recognition. Moreover, as scientists better understand what components make a good artificial vision system, they can use these hints to better understand the human brain as well.

Watch how the MIT/Harvard researchers are finding a better way for computers to 'see' : http://www.rowland.harvard.edu/rjf/cox/plos_video.html

Source: Pinto N, Doukhan D, DiCarlo JJ, Cox DD. A high-throughput screening approach to good forms of biologically-inspired visual representation. PLoS Computational Biology. Nov 26 2009. Read the article here: http://www.ploscompbiol.org/doi/pcbi.1000579

Funding: National Institutes of Health, McKnight Endowment for Neuroscience, Jerry and Marge Burnett, the McGovern Institute for Brain Research at MIT, and the Rowland Institute at Harvard. Hardware support provided by the NVIDIA Corporation.

Jen Hirsch | Newswise Science News
Further information:
http://www.mit.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>