Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Demonstrate a Better Way for Computers to ‘See’

04.12.2009
What’s new: Taking inspiration from genetic screening techniques, researchers from MIT and Harvard have demonstrated a way to build better artificial visual systems with the help of low-cost, high-performance gaming hardware.

Why it matters: The neural processing involved in visually recognizing even the simplest object in a natural environment is profound---and profoundly difficult to mimic. Neuroscientists have made broad advances in understanding the visual system, but much of the inner workings of biologically-based systems remain a mystery.

Using Graphics Processing Units (GPUs) -- the same technology video game designers use to render life-like graphics – MIT and Harvard researchers are now making progress faster than ever before. “We made a powerful computing system that delivers over hundred fold speed-ups relative to conventional methods,” said Nicolas Pinto, a PhD candidate in James DiCarlo’s lab at the McGovern Institute for Brain Research at MIT. “With this extra computational power, we can discover new vision models that traditional methods miss.” Pinto co-authored the PLoS study with David Cox of the Visual Neuroscience Group at the Rowland Institute at Harvard.

How they did it: Harnessing the processing power of dozens of high-performance NVIDIA graphics cards and PlayStation 3s gaming devices, the team designed a high-throughput screening process to tease out the best parameters for visual object recognition tasks. The resulting model outperformed a crop of state-of-the-art vision systems across a range of tests -- more accurately identifying a range of objects on random natural backgrounds with variation in position, scale, and rotation. Had the team used conventional computational tools, the one-week screening phase would have taken over two years to complete.

Next steps: The researchers say that their high-throughput approach could be applied to other areas of computer vision, such as face identification, object tracking, pedestrian detection for automotive applications, and gesture and action recognition. Moreover, as scientists better understand what components make a good artificial vision system, they can use these hints to better understand the human brain as well.

Watch how the MIT/Harvard researchers are finding a better way for computers to 'see' : http://www.rowland.harvard.edu/rjf/cox/plos_video.html

Source: Pinto N, Doukhan D, DiCarlo JJ, Cox DD. A high-throughput screening approach to good forms of biologically-inspired visual representation. PLoS Computational Biology. Nov 26 2009. Read the article here: http://www.ploscompbiol.org/doi/pcbi.1000579

Funding: National Institutes of Health, McKnight Endowment for Neuroscience, Jerry and Marge Burnett, the McGovern Institute for Brain Research at MIT, and the Rowland Institute at Harvard. Hardware support provided by the NVIDIA Corporation.

Jen Hirsch | Newswise Science News
Further information:
http://www.mit.edu

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>