Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Boost Efficiency of Multi-Hop Wireless Networks

19.04.2012
Multi-hop wireless networks can provide data access for large and unconventional spaces, but they have long faced significant limits on the amount of data they can transmit. Now researchers from North Carolina State University have developed a more efficient data transmission approach that can boost the amount of data the networks can transmit by 20 to 80 percent.

“Our approach increases the average amount of data that can be transmitted within the network by at least 20 percent for networks with randomly placed nodes – and up to 80 percent if the nodes are positioned in clusters within the network,” says Dr. Rudra Dutta, an associate professor of computer science at NC State and co-author of a paper on the research. The approach also makes the network more energy efficient, which can extend the lifetime of the network if the nodes are battery-powered.

Multi-hop wireless networks utilize multiple wireless nodes to provide coverage to a large area by forwarding and receiving data wirelessly between the nodes. However, these networks have “hot spots” – places in the network where multiple wireless transmissions can interfere with each other. This limits how quickly the network can transfer data, because the nodes have to take turns transmitting data at these congested points.

Data can be transmitted at low power over short distances, which limits the degree of interference with other nodes. But this approach means that the data may have to be transmitted through many nodes before reaching its final destination. Or, data can be transmitted at high power, which means the data can be sent further and more quickly – but the powerful transmission may interfere with transmissions from many other nodes.

Dutta and Ph.D. student Parth Pathak developed an approach called centrality-based power control to address the problem. Their approach uses an algorithm that instructs each node in the network on how much power to use for each transmission depending on its final destination.

The algorithm optimizes system efficiency by determining when a powerful transmission is worth the added signal disruption, and when less powerful transmissions are needed.

The paper, “Centrality-based power control for hot-spot mitigation in multi-hop wireless networks,” is published online by the journal Computer Communications, and is in press for a print version of an upcoming issue of the journal. Pathak is lead author. The research was supported in part by the U.S. Army Research Office.

-shipman-

Note to Editors: The study abstract follows.

“Centrality-based power control for hot-spot mitigation in multi-hop wireless networks”

Authors: Parth H. Pathak, Rudra Dutta, North Carolina State University

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>