Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Boost Efficiency of Multi-Hop Wireless Networks

19.04.2012
Multi-hop wireless networks can provide data access for large and unconventional spaces, but they have long faced significant limits on the amount of data they can transmit. Now researchers from North Carolina State University have developed a more efficient data transmission approach that can boost the amount of data the networks can transmit by 20 to 80 percent.

“Our approach increases the average amount of data that can be transmitted within the network by at least 20 percent for networks with randomly placed nodes – and up to 80 percent if the nodes are positioned in clusters within the network,” says Dr. Rudra Dutta, an associate professor of computer science at NC State and co-author of a paper on the research. The approach also makes the network more energy efficient, which can extend the lifetime of the network if the nodes are battery-powered.

Multi-hop wireless networks utilize multiple wireless nodes to provide coverage to a large area by forwarding and receiving data wirelessly between the nodes. However, these networks have “hot spots” – places in the network where multiple wireless transmissions can interfere with each other. This limits how quickly the network can transfer data, because the nodes have to take turns transmitting data at these congested points.

Data can be transmitted at low power over short distances, which limits the degree of interference with other nodes. But this approach means that the data may have to be transmitted through many nodes before reaching its final destination. Or, data can be transmitted at high power, which means the data can be sent further and more quickly – but the powerful transmission may interfere with transmissions from many other nodes.

Dutta and Ph.D. student Parth Pathak developed an approach called centrality-based power control to address the problem. Their approach uses an algorithm that instructs each node in the network on how much power to use for each transmission depending on its final destination.

The algorithm optimizes system efficiency by determining when a powerful transmission is worth the added signal disruption, and when less powerful transmissions are needed.

The paper, “Centrality-based power control for hot-spot mitigation in multi-hop wireless networks,” is published online by the journal Computer Communications, and is in press for a print version of an upcoming issue of the journal. Pathak is lead author. The research was supported in part by the U.S. Army Research Office.

-shipman-

Note to Editors: The study abstract follows.

“Centrality-based power control for hot-spot mitigation in multi-hop wireless networks”

Authors: Parth H. Pathak, Rudra Dutta, North Carolina State University

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>