Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Boost Efficiency of Multi-Hop Wireless Networks

19.04.2012
Multi-hop wireless networks can provide data access for large and unconventional spaces, but they have long faced significant limits on the amount of data they can transmit. Now researchers from North Carolina State University have developed a more efficient data transmission approach that can boost the amount of data the networks can transmit by 20 to 80 percent.

“Our approach increases the average amount of data that can be transmitted within the network by at least 20 percent for networks with randomly placed nodes – and up to 80 percent if the nodes are positioned in clusters within the network,” says Dr. Rudra Dutta, an associate professor of computer science at NC State and co-author of a paper on the research. The approach also makes the network more energy efficient, which can extend the lifetime of the network if the nodes are battery-powered.

Multi-hop wireless networks utilize multiple wireless nodes to provide coverage to a large area by forwarding and receiving data wirelessly between the nodes. However, these networks have “hot spots” – places in the network where multiple wireless transmissions can interfere with each other. This limits how quickly the network can transfer data, because the nodes have to take turns transmitting data at these congested points.

Data can be transmitted at low power over short distances, which limits the degree of interference with other nodes. But this approach means that the data may have to be transmitted through many nodes before reaching its final destination. Or, data can be transmitted at high power, which means the data can be sent further and more quickly – but the powerful transmission may interfere with transmissions from many other nodes.

Dutta and Ph.D. student Parth Pathak developed an approach called centrality-based power control to address the problem. Their approach uses an algorithm that instructs each node in the network on how much power to use for each transmission depending on its final destination.

The algorithm optimizes system efficiency by determining when a powerful transmission is worth the added signal disruption, and when less powerful transmissions are needed.

The paper, “Centrality-based power control for hot-spot mitigation in multi-hop wireless networks,” is published online by the journal Computer Communications, and is in press for a print version of an upcoming issue of the journal. Pathak is lead author. The research was supported in part by the U.S. Army Research Office.

-shipman-

Note to Editors: The study abstract follows.

“Centrality-based power control for hot-spot mitigation in multi-hop wireless networks”

Authors: Parth H. Pathak, Rudra Dutta, North Carolina State University

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>