Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher unveils prototype of Arctic climate reanalysis Supercomputers merge datasets, improve polar climate modeling

29.09.2010
Early in his career, David H. Bromwich trekked with fellow scientists through the extreme cold, cutting winds and limited daylight of the Earth’s polar regions. These days, he is perfectly content to analyze those inhospitable territories from a more temperate environment.

From his laboratory at The Ohio State University’s Byrd Polar Research Center (BPRC), the senior research scientist this week unveiled a low-resolution prototype of the first comprehensive climate reconstruction of the entire arctic system.

Bromwich and his Arctic System Reanalysis (ASR) research team are leveraging the powerful computing and storage resources of the Ohio Supercomputer Center (OSC) to synthesize historical weather data from a region of nearly 29-million square miles – everything north of Minneapolis, Minn.; Turin, Italy; and the Black Sea.

The team is integrating multiple enormous databases containing eleven years of satellite readings and direct observations of the Arctic atmosphere/sea-ice/land-surface system. The time period corresponds to the 1999 launch of the NASA spacecraft named Terra, a polar-orbiting climate research satellite.

When completed, Bromwich’s National Science Foundation project will provide a high-resolution description of the high-latitude expanse in dimensions of altitude (71 layers), space (every 10 kilometers) and time (every three hours).

“The ASR, which can be viewed as a blend of modeling and observations, will ingest historical data streams along with measurements of the physical components of the Arctic Observing Network developed as part of the global scientific project known as the International Polar Year,” explained Bromwich, who earned his doctorate in meteorology in 1979.

“With the introduction of space-borne measurements over the last few decades, researchers have been inundated with vast amounts of information. Today, the trick is to figure out how to effectively use all the diverse information sources.”

To generate the complex visualizations, the ASR group has processed the information using more than 1,000 cores of OSC’s IBM 1350 Opteron “Glenn Cluster” over the last couple of months. The data accumulated for and generated by the model eventually will fill hundreds of terabytes of disk space on the center’s IBM Mass Storage System.

“I think the model is giving very reasonable results,” said Lesheng Bai, a research associate at BPRC. “We’ve had to resolve several issues with the model physics, because of the challenging conditions in the Arctic. But, the model is running well at this coarse spatial resolution.”

Staff members at OSC have been responsible for installing and testing on the “Glenn Cluster” the state-of-the-art Weather Research and Forecasting (WRF) model. WRF is a numerical weather prediction system developed by a collaborative partnership that includes, among others, the National Center for Atmospheric Research (NCAR) and the National Oceanic and Atmospheric Administration (NOAA). The Polar WRF version of the model developed by BPRC was installed once the ASR group had completed extensive testing of the model over the Arctic Ocean and Alaska.

“We worked with Dr. Bromwich to provide benchmarking for the model in order to select the most efficient infrastructure configurations of the Glenn Cluster,” said Lin Li, an OSC systems engineer. “The staff optimized the programming code and developed a version control system for it. We also identified and implemented archiving strategies, both for on-site and partner-site storage systems.”

Producing the ASR has not been a one-shop job. In addition to the assistance of several post-doctoral research associates at BPRC, Bromwich also depends upon the contributions of colleagues at several other research organizations. Scientists at NCAR have been optimizing the system used to assimilate Arctic observations into Polar WRF and verified the integration of all the data streams. A colleague at the University of Illinois is responsible for some quality control, data archiving, data access and visualization issues. And, at the University of Colorado-Boulder, investigators focused on optimization, evaluation and testing.

“The ASR is ingesting and generating a large volume of data – creating about twenty terabytes of output per year, all of which we consider to be a community resource,” Bromwich said. “We will maintain the secure archive of all reanalysis data at OSC and develop web-based tools for access and analysis by the wider scientific community.”

Over the final year of the four-year project, Bromwich and his team will work to complete a high-resolution version of the model. He hopes the detailed information generated by the study contributes to a better understanding of climate shifts in the environmentally sensitive Arctic.

“The Arctic is in the midst of rapid change,” Bromwich noted.
“There have been pronounced increases in surface air temperature, especially for winter and spring over subarctic land areas, as well as over the Arctic Ocean. It’s extremely important that we better understand what’s happening there in order to predict the future more accurately. Through data assimilation, the ASR will serve as a state-of-the-art synthesis tool for assessing Arctic climate variability and monitoring Arctic change.”

Once the initial ASR project is completed, Bromwich sees the potential for collecting and integrating additional data into Polar WRF, possibly from as far back as 1957. That year signaled the beginning of a global scientific project known as the International Geophysical Year and saw the Soviet Union launch the world’s first satellite, “Sputnik.”

The Ohio Supercomputer Center (OSC) is a catalytic partner of Ohio universities and industries, providing a reliable high performance computing and high performance networking infrastructure for a diverse statewide/regional community including education, academic research, industry, and state government. Funded by the Ohio Board of Regents, OSC promotes and stimulates computational research and education in order to act as a key enabler for the state's aspirations in advanced technology, information systems, and advanced industries. For more, visit .

The Byrd Polar Research Center (BPRC) at The Ohio State University is an internationally recognized leader in polar and alpine research conducted throughout the world. The center is named in honor of Admiral Richard E. Byrd, America's most famous polar explorer. Research at the Center focuses on the role of cold regions in the Earth's overall climate system, and encompasses geological sciences, geochemistry, glaciology, paleoclimatology, meteorology, remote sensing, ocean dynamics, and the history of polar exploration.

Mr. Jamie Abel, APR
Media and Communications Director
Ohio Supercomputer Center
1224 Kinnear Road
Columbus, Ohio 43212-1163
Office: 614-292-6495
Mobile: 614-886-1813
Internet: jabel@osc.edu
Learn more about OSC at http://www.osc.edu

Jamie Abel | Ohio Supercomputer Center
Further information:
http://www.osc.edu

Further reports about: ASR Arctic Arctic Ocean Atmospheric BPRC Bromwich OSC Pacific Ocean Polar Day Supercomputer data stream

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>