Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher unveils prototype of Arctic climate reanalysis Supercomputers merge datasets, improve polar climate modeling

29.09.2010
Early in his career, David H. Bromwich trekked with fellow scientists through the extreme cold, cutting winds and limited daylight of the Earth’s polar regions. These days, he is perfectly content to analyze those inhospitable territories from a more temperate environment.

From his laboratory at The Ohio State University’s Byrd Polar Research Center (BPRC), the senior research scientist this week unveiled a low-resolution prototype of the first comprehensive climate reconstruction of the entire arctic system.

Bromwich and his Arctic System Reanalysis (ASR) research team are leveraging the powerful computing and storage resources of the Ohio Supercomputer Center (OSC) to synthesize historical weather data from a region of nearly 29-million square miles – everything north of Minneapolis, Minn.; Turin, Italy; and the Black Sea.

The team is integrating multiple enormous databases containing eleven years of satellite readings and direct observations of the Arctic atmosphere/sea-ice/land-surface system. The time period corresponds to the 1999 launch of the NASA spacecraft named Terra, a polar-orbiting climate research satellite.

When completed, Bromwich’s National Science Foundation project will provide a high-resolution description of the high-latitude expanse in dimensions of altitude (71 layers), space (every 10 kilometers) and time (every three hours).

“The ASR, which can be viewed as a blend of modeling and observations, will ingest historical data streams along with measurements of the physical components of the Arctic Observing Network developed as part of the global scientific project known as the International Polar Year,” explained Bromwich, who earned his doctorate in meteorology in 1979.

“With the introduction of space-borne measurements over the last few decades, researchers have been inundated with vast amounts of information. Today, the trick is to figure out how to effectively use all the diverse information sources.”

To generate the complex visualizations, the ASR group has processed the information using more than 1,000 cores of OSC’s IBM 1350 Opteron “Glenn Cluster” over the last couple of months. The data accumulated for and generated by the model eventually will fill hundreds of terabytes of disk space on the center’s IBM Mass Storage System.

“I think the model is giving very reasonable results,” said Lesheng Bai, a research associate at BPRC. “We’ve had to resolve several issues with the model physics, because of the challenging conditions in the Arctic. But, the model is running well at this coarse spatial resolution.”

Staff members at OSC have been responsible for installing and testing on the “Glenn Cluster” the state-of-the-art Weather Research and Forecasting (WRF) model. WRF is a numerical weather prediction system developed by a collaborative partnership that includes, among others, the National Center for Atmospheric Research (NCAR) and the National Oceanic and Atmospheric Administration (NOAA). The Polar WRF version of the model developed by BPRC was installed once the ASR group had completed extensive testing of the model over the Arctic Ocean and Alaska.

“We worked with Dr. Bromwich to provide benchmarking for the model in order to select the most efficient infrastructure configurations of the Glenn Cluster,” said Lin Li, an OSC systems engineer. “The staff optimized the programming code and developed a version control system for it. We also identified and implemented archiving strategies, both for on-site and partner-site storage systems.”

Producing the ASR has not been a one-shop job. In addition to the assistance of several post-doctoral research associates at BPRC, Bromwich also depends upon the contributions of colleagues at several other research organizations. Scientists at NCAR have been optimizing the system used to assimilate Arctic observations into Polar WRF and verified the integration of all the data streams. A colleague at the University of Illinois is responsible for some quality control, data archiving, data access and visualization issues. And, at the University of Colorado-Boulder, investigators focused on optimization, evaluation and testing.

“The ASR is ingesting and generating a large volume of data – creating about twenty terabytes of output per year, all of which we consider to be a community resource,” Bromwich said. “We will maintain the secure archive of all reanalysis data at OSC and develop web-based tools for access and analysis by the wider scientific community.”

Over the final year of the four-year project, Bromwich and his team will work to complete a high-resolution version of the model. He hopes the detailed information generated by the study contributes to a better understanding of climate shifts in the environmentally sensitive Arctic.

“The Arctic is in the midst of rapid change,” Bromwich noted.
“There have been pronounced increases in surface air temperature, especially for winter and spring over subarctic land areas, as well as over the Arctic Ocean. It’s extremely important that we better understand what’s happening there in order to predict the future more accurately. Through data assimilation, the ASR will serve as a state-of-the-art synthesis tool for assessing Arctic climate variability and monitoring Arctic change.”

Once the initial ASR project is completed, Bromwich sees the potential for collecting and integrating additional data into Polar WRF, possibly from as far back as 1957. That year signaled the beginning of a global scientific project known as the International Geophysical Year and saw the Soviet Union launch the world’s first satellite, “Sputnik.”

The Ohio Supercomputer Center (OSC) is a catalytic partner of Ohio universities and industries, providing a reliable high performance computing and high performance networking infrastructure for a diverse statewide/regional community including education, academic research, industry, and state government. Funded by the Ohio Board of Regents, OSC promotes and stimulates computational research and education in order to act as a key enabler for the state's aspirations in advanced technology, information systems, and advanced industries. For more, visit .

The Byrd Polar Research Center (BPRC) at The Ohio State University is an internationally recognized leader in polar and alpine research conducted throughout the world. The center is named in honor of Admiral Richard E. Byrd, America's most famous polar explorer. Research at the Center focuses on the role of cold regions in the Earth's overall climate system, and encompasses geological sciences, geochemistry, glaciology, paleoclimatology, meteorology, remote sensing, ocean dynamics, and the history of polar exploration.

Mr. Jamie Abel, APR
Media and Communications Director
Ohio Supercomputer Center
1224 Kinnear Road
Columbus, Ohio 43212-1163
Office: 614-292-6495
Mobile: 614-886-1813
Internet: jabel@osc.edu
Learn more about OSC at http://www.osc.edu

Jamie Abel | Ohio Supercomputer Center
Further information:
http://www.osc.edu

Further reports about: ASR Arctic Arctic Ocean Atmospheric BPRC Bromwich OSC Pacific Ocean Polar Day Supercomputer data stream

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>