Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Helps Exploit Data from New Radar

11.05.2011
Computer models used to forecast storms don't (yet) know how to take advantage of the additional capabilities that will soon be available from advanced dual-polarimetric radar units being installed around the country by the National Weather Service.

Scientists in the Earth System Science Center at The University of Alabama in Huntsville will spend the next three years studying how forecast models can best use the enhanced information from the new radar system to improve storm forecasts.

Dr. Xuanli Li and Dr. John Mecikalski at UAHuntsville, and Dr. Derek Posselt at the University of Michigan, supported by a $445,000 grant from the National Science Foundation, will develop tools to help translate and input what the advanced radar units see into forecast models.

The weather service's NEXRAD Doppler radar units, which have been in service since the early 1990s, send out their radar signals in a single horizontal polarization. The advanced dual-polarimetric (dual-pol) radar being installed around the country through 2013 sends out both horizontal and vertical radar signals.

NEXRAD's single signal provides useful information about two variables, which can tell forecasters and forecast models such things as the amount of water in a cloud or storm system, and the direction in which it is moving.

By looking at the raw signal, plus differences between the vertical and horizontal radar signals, the dual-pol radar gathers information about six variables. These can provide information about the amount of water and movement of the storm, plus other factors such as the type, shape and size of water or ice particles at various places within a cloud.

"In a storm you might have clouds with many small droplets or clouds with a smaller number of large drops, but both might produce similar amounts of rain,” said Mecikalski, an associate professor of atmospheric science. "With the old NEXRAD systems those might show up with very different echoes, which would suggest different rainfall rates. With the new radar you can get more information about the type and shape of the droplets, so you can get a much improved estimate of precipitation."

The challenge, said Li, a post-doctoral research associate, is that existing forecast models don't know what to do with the extra data.

"There hasn't been much research on how to input those data into weather forecast models in real time," she said.

"We will be taking the returns from the radar and assigning those signals to variables the models can understand, such as the amount of snow per cubic meter."

"It is difficult for current forecast models to accurately predict the dynamics and physics of a storm," said Mecikalski. "We want to use data from the new radar and other instruments to help the models do a better job of describing the storm's structure and development. With the new radar's capability we will be able to get more accurate information about a storm, especially about ice particles in clouds, then use that data to make more accurate short-term forecasts."

The team will focus on convective storms, which are often difficult to forecast. They hope the dual-pol radar data will help forecast models provide several improved weather products, including more accurate detection of hail and better rainfall estimates.

UAHuntsville scientists have been working with dual-pol data for several years: The university has been operating a dual-pol radar in cooperation with a local television station for almost seven years.

For additional information:
Dr. Xuanli Li, 256.961.7596
xuanli@nsstc.uah.edu
Dr. John Mecikalski, 256.961.7046

| Newswise Science News
Further information:
http://www.nsstc.uah.edu

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>