Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Helps Exploit Data from New Radar

11.05.2011
Computer models used to forecast storms don't (yet) know how to take advantage of the additional capabilities that will soon be available from advanced dual-polarimetric radar units being installed around the country by the National Weather Service.

Scientists in the Earth System Science Center at The University of Alabama in Huntsville will spend the next three years studying how forecast models can best use the enhanced information from the new radar system to improve storm forecasts.

Dr. Xuanli Li and Dr. John Mecikalski at UAHuntsville, and Dr. Derek Posselt at the University of Michigan, supported by a $445,000 grant from the National Science Foundation, will develop tools to help translate and input what the advanced radar units see into forecast models.

The weather service's NEXRAD Doppler radar units, which have been in service since the early 1990s, send out their radar signals in a single horizontal polarization. The advanced dual-polarimetric (dual-pol) radar being installed around the country through 2013 sends out both horizontal and vertical radar signals.

NEXRAD's single signal provides useful information about two variables, which can tell forecasters and forecast models such things as the amount of water in a cloud or storm system, and the direction in which it is moving.

By looking at the raw signal, plus differences between the vertical and horizontal radar signals, the dual-pol radar gathers information about six variables. These can provide information about the amount of water and movement of the storm, plus other factors such as the type, shape and size of water or ice particles at various places within a cloud.

"In a storm you might have clouds with many small droplets or clouds with a smaller number of large drops, but both might produce similar amounts of rain,” said Mecikalski, an associate professor of atmospheric science. "With the old NEXRAD systems those might show up with very different echoes, which would suggest different rainfall rates. With the new radar you can get more information about the type and shape of the droplets, so you can get a much improved estimate of precipitation."

The challenge, said Li, a post-doctoral research associate, is that existing forecast models don't know what to do with the extra data.

"There hasn't been much research on how to input those data into weather forecast models in real time," she said.

"We will be taking the returns from the radar and assigning those signals to variables the models can understand, such as the amount of snow per cubic meter."

"It is difficult for current forecast models to accurately predict the dynamics and physics of a storm," said Mecikalski. "We want to use data from the new radar and other instruments to help the models do a better job of describing the storm's structure and development. With the new radar's capability we will be able to get more accurate information about a storm, especially about ice particles in clouds, then use that data to make more accurate short-term forecasts."

The team will focus on convective storms, which are often difficult to forecast. They hope the dual-pol radar data will help forecast models provide several improved weather products, including more accurate detection of hail and better rainfall estimates.

UAHuntsville scientists have been working with dual-pol data for several years: The university has been operating a dual-pol radar in cooperation with a local television station for almost seven years.

For additional information:
Dr. Xuanli Li, 256.961.7596
xuanli@nsstc.uah.edu
Dr. John Mecikalski, 256.961.7046

| Newswise Science News
Further information:
http://www.nsstc.uah.edu

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>