Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research Helps Exploit Data from New Radar

Computer models used to forecast storms don't (yet) know how to take advantage of the additional capabilities that will soon be available from advanced dual-polarimetric radar units being installed around the country by the National Weather Service.

Scientists in the Earth System Science Center at The University of Alabama in Huntsville will spend the next three years studying how forecast models can best use the enhanced information from the new radar system to improve storm forecasts.

Dr. Xuanli Li and Dr. John Mecikalski at UAHuntsville, and Dr. Derek Posselt at the University of Michigan, supported by a $445,000 grant from the National Science Foundation, will develop tools to help translate and input what the advanced radar units see into forecast models.

The weather service's NEXRAD Doppler radar units, which have been in service since the early 1990s, send out their radar signals in a single horizontal polarization. The advanced dual-polarimetric (dual-pol) radar being installed around the country through 2013 sends out both horizontal and vertical radar signals.

NEXRAD's single signal provides useful information about two variables, which can tell forecasters and forecast models such things as the amount of water in a cloud or storm system, and the direction in which it is moving.

By looking at the raw signal, plus differences between the vertical and horizontal radar signals, the dual-pol radar gathers information about six variables. These can provide information about the amount of water and movement of the storm, plus other factors such as the type, shape and size of water or ice particles at various places within a cloud.

"In a storm you might have clouds with many small droplets or clouds with a smaller number of large drops, but both might produce similar amounts of rain,” said Mecikalski, an associate professor of atmospheric science. "With the old NEXRAD systems those might show up with very different echoes, which would suggest different rainfall rates. With the new radar you can get more information about the type and shape of the droplets, so you can get a much improved estimate of precipitation."

The challenge, said Li, a post-doctoral research associate, is that existing forecast models don't know what to do with the extra data.

"There hasn't been much research on how to input those data into weather forecast models in real time," she said.

"We will be taking the returns from the radar and assigning those signals to variables the models can understand, such as the amount of snow per cubic meter."

"It is difficult for current forecast models to accurately predict the dynamics and physics of a storm," said Mecikalski. "We want to use data from the new radar and other instruments to help the models do a better job of describing the storm's structure and development. With the new radar's capability we will be able to get more accurate information about a storm, especially about ice particles in clouds, then use that data to make more accurate short-term forecasts."

The team will focus on convective storms, which are often difficult to forecast. They hope the dual-pol radar data will help forecast models provide several improved weather products, including more accurate detection of hail and better rainfall estimates.

UAHuntsville scientists have been working with dual-pol data for several years: The university has been operating a dual-pol radar in cooperation with a local television station for almost seven years.

For additional information:
Dr. Xuanli Li, 256.961.7596
Dr. John Mecikalski, 256.961.7046

| Newswise Science News
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>