Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Helps Exploit Data from New Radar

11.05.2011
Computer models used to forecast storms don't (yet) know how to take advantage of the additional capabilities that will soon be available from advanced dual-polarimetric radar units being installed around the country by the National Weather Service.

Scientists in the Earth System Science Center at The University of Alabama in Huntsville will spend the next three years studying how forecast models can best use the enhanced information from the new radar system to improve storm forecasts.

Dr. Xuanli Li and Dr. John Mecikalski at UAHuntsville, and Dr. Derek Posselt at the University of Michigan, supported by a $445,000 grant from the National Science Foundation, will develop tools to help translate and input what the advanced radar units see into forecast models.

The weather service's NEXRAD Doppler radar units, which have been in service since the early 1990s, send out their radar signals in a single horizontal polarization. The advanced dual-polarimetric (dual-pol) radar being installed around the country through 2013 sends out both horizontal and vertical radar signals.

NEXRAD's single signal provides useful information about two variables, which can tell forecasters and forecast models such things as the amount of water in a cloud or storm system, and the direction in which it is moving.

By looking at the raw signal, plus differences between the vertical and horizontal radar signals, the dual-pol radar gathers information about six variables. These can provide information about the amount of water and movement of the storm, plus other factors such as the type, shape and size of water or ice particles at various places within a cloud.

"In a storm you might have clouds with many small droplets or clouds with a smaller number of large drops, but both might produce similar amounts of rain,” said Mecikalski, an associate professor of atmospheric science. "With the old NEXRAD systems those might show up with very different echoes, which would suggest different rainfall rates. With the new radar you can get more information about the type and shape of the droplets, so you can get a much improved estimate of precipitation."

The challenge, said Li, a post-doctoral research associate, is that existing forecast models don't know what to do with the extra data.

"There hasn't been much research on how to input those data into weather forecast models in real time," she said.

"We will be taking the returns from the radar and assigning those signals to variables the models can understand, such as the amount of snow per cubic meter."

"It is difficult for current forecast models to accurately predict the dynamics and physics of a storm," said Mecikalski. "We want to use data from the new radar and other instruments to help the models do a better job of describing the storm's structure and development. With the new radar's capability we will be able to get more accurate information about a storm, especially about ice particles in clouds, then use that data to make more accurate short-term forecasts."

The team will focus on convective storms, which are often difficult to forecast. They hope the dual-pol radar data will help forecast models provide several improved weather products, including more accurate detection of hail and better rainfall estimates.

UAHuntsville scientists have been working with dual-pol data for several years: The university has been operating a dual-pol radar in cooperation with a local television station for almost seven years.

For additional information:
Dr. Xuanli Li, 256.961.7596
xuanli@nsstc.uah.edu
Dr. John Mecikalski, 256.961.7046

| Newswise Science News
Further information:
http://www.nsstc.uah.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>