Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research provides effective battle planning for supercomputer war

New research from the University of Warwick, to be presented at the World’s largest supercomputing conference next week, pits China’s new No. 1 supercomputer against alternative US designs. The work provides crucial new analysis that will benefit the battle plans of both sides, in an escalating war between two competing technologies.

Professor Stephen Jarvis, Royal Society Industry Fellow at the University of Warwick’s Department of Computer Science, will tell some of the 15,000 delegates in New Orleans next week, how general-purpose GPU (GPGPU) designs used in China’s 2.5 Petaflops Tianhe-1A fare against alternative supercomputing designs employed in the US; these use relatively simpler processing cores brought together in parallel by highly-effective and scalable interconnects, as seen in the IBM BlueGene architectures.

Professor Jarvis says that:

“The ‘Should I buy GPGPUs or BlueGene’ debate ticks all the boxes for a good fight. No one is quite sure of the design that is going to get us to Exascale computing, the next milestone in 21st-century computing, one quintillion floating-point operations per second (10^18). It’s not simply an architectural decision either – you could run a small town on the power required to run one of these supercomputers and even if you plump for a design and power the thing up, programming it is currently impossible.”

Professor Jarvis’ research uses mathematical models, benchmarking and simulation to determine the likely performance of these future computing designs at scale:

“At Supercomputing in New Orleans we directly compare GPGPU designs with that of the BlueGene. If you are investing billions of Dollars or Yuan in supercomputing programmes, then it is worth standing back and calculating what designs might realistically get you to Exascale, and once you have that design, mitigating for the known risks – power, resilience and programmability.”

Professor Jarvis’ paper uses mathematical modeling to highlight some of the biggest challenges in the supercomputing war. The first of these is a massive programming/engineering gap, where even the best computer programmers are struggling to use even a small fraction of the computing power that the latest supercomputing designs have and, which will continue to be a problem without significant innovation. Professor Jarvis says:

“if your application fits, then GPGPU solutions will outgun BlueGene designs on peak performance” – but he also illustrates potential pitfalls in this approach – “the Tianhe-1A has a theoretical peak performance of 4.7 Petaflops, yet our best programming code-based measures can only deliver 2.5 Petaflops of that peak, that’s a lot of unused computer that you are powering. Contrast this with the Dawn BlueGene/P at Lawrence Livermore National Laboratory in the US, it’s a small machine at 0.5 Petaflops peak [performance], but it delivers 0.415 Petaflops of that peak. In many ways this is not surprising, as our current programming models are designed around CPUs.”

But the story doesn’t end there. “The BlueGene design is not without its own problems. In our paper we show that BlueGenes can require many more processing elements than a GPU-based system to do the same work. Many of our scientific algorithms – the recipes for doing the calculations – just do not scale to this degree, so unless we invest in this area we are just going to end up with fantastic machines that we can not use.”

Another key problem identified by the University of Warwick research is the fact that in the rush to use excitingly powerful GPGPUs, researchers have not yet put sufficient energy into devising the best technologies to actually link them together in parallel at massive scales.

Professor Jarvis’ modeling found that small GPU-based systems solved problems between 3 and 7 times faster than traditional CPU-based designs. However he also found that as you increased the number of processing elements linked together, the performance of the GPU-based systems improved at a much slower rate than the BlueGene-style machines.

Professor Jarvis concludes that:

“Given the crossroads at which supercomputing stands, and the national pride at stake in achieving Exascale, this design battle will continue to be hotly contested. It will also need the best modelling techniques that the community can provide to discern good design from bad.”

Peter Dunn | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

A new look at thyroid diseases

28.10.2016 | Life Sciences

Sweetening neurotransmitter receptors and other neuronal proteins

28.10.2016 | Life Sciences

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

More VideoLinks >>>