Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research provides effective battle planning for supercomputer war

12.11.2010
New research from the University of Warwick, to be presented at the World’s largest supercomputing conference next week, pits China’s new No. 1 supercomputer against alternative US designs. The work provides crucial new analysis that will benefit the battle plans of both sides, in an escalating war between two competing technologies.

Professor Stephen Jarvis, Royal Society Industry Fellow at the University of Warwick’s Department of Computer Science, will tell some of the 15,000 delegates in New Orleans next week, how general-purpose GPU (GPGPU) designs used in China’s 2.5 Petaflops Tianhe-1A fare against alternative supercomputing designs employed in the US; these use relatively simpler processing cores brought together in parallel by highly-effective and scalable interconnects, as seen in the IBM BlueGene architectures.

Professor Jarvis says that:

“The ‘Should I buy GPGPUs or BlueGene’ debate ticks all the boxes for a good fight. No one is quite sure of the design that is going to get us to Exascale computing, the next milestone in 21st-century computing, one quintillion floating-point operations per second (10^18). It’s not simply an architectural decision either – you could run a small town on the power required to run one of these supercomputers and even if you plump for a design and power the thing up, programming it is currently impossible.”

Professor Jarvis’ research uses mathematical models, benchmarking and simulation to determine the likely performance of these future computing designs at scale:

“At Supercomputing in New Orleans we directly compare GPGPU designs with that of the BlueGene. If you are investing billions of Dollars or Yuan in supercomputing programmes, then it is worth standing back and calculating what designs might realistically get you to Exascale, and once you have that design, mitigating for the known risks – power, resilience and programmability.”

Professor Jarvis’ paper uses mathematical modeling to highlight some of the biggest challenges in the supercomputing war. The first of these is a massive programming/engineering gap, where even the best computer programmers are struggling to use even a small fraction of the computing power that the latest supercomputing designs have and, which will continue to be a problem without significant innovation. Professor Jarvis says:

“if your application fits, then GPGPU solutions will outgun BlueGene designs on peak performance” – but he also illustrates potential pitfalls in this approach – “the Tianhe-1A has a theoretical peak performance of 4.7 Petaflops, yet our best programming code-based measures can only deliver 2.5 Petaflops of that peak, that’s a lot of unused computer that you are powering. Contrast this with the Dawn BlueGene/P at Lawrence Livermore National Laboratory in the US, it’s a small machine at 0.5 Petaflops peak [performance], but it delivers 0.415 Petaflops of that peak. In many ways this is not surprising, as our current programming models are designed around CPUs.”

But the story doesn’t end there. “The BlueGene design is not without its own problems. In our paper we show that BlueGenes can require many more processing elements than a GPU-based system to do the same work. Many of our scientific algorithms – the recipes for doing the calculations – just do not scale to this degree, so unless we invest in this area we are just going to end up with fantastic machines that we can not use.”

Another key problem identified by the University of Warwick research is the fact that in the rush to use excitingly powerful GPGPUs, researchers have not yet put sufficient energy into devising the best technologies to actually link them together in parallel at massive scales.

Professor Jarvis’ modeling found that small GPU-based systems solved problems between 3 and 7 times faster than traditional CPU-based designs. However he also found that as you increased the number of processing elements linked together, the performance of the GPU-based systems improved at a much slower rate than the BlueGene-style machines.

Professor Jarvis concludes that:

“Given the crossroads at which supercomputing stands, and the national pride at stake in achieving Exascale, this design battle will continue to be hotly contested. It will also need the best modelling techniques that the community can provide to discern good design from bad.”

Peter Dunn | EurekAlert!
Further information:
http://www.warwick.ac.uk
http://www2.warwick.ac.uk/newsandevents/pressreleases/new_research_provides/

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>