Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research could usher in next generation of batteries, fuel cells

10.04.2015

University of South Carolina and Clemson reseachers uncover clean interfaces

Scientists from South Carolina's leading public universities--the University of South Carolina and Clemson University--have made a discovery that could dramatically improve the efficiency of batteries and fuel cells.

The research, which is published in the journal Nature Communications, involves improving the transport of oxygen ions, a key component in converting chemical reactions into electricity. The team studied a well-known material, gadolinium doped ceria (GDC), which transports oxygen ions and is currently in use as a solid oxide fuel cell electrolyte. Through the use of additives and a "smart" chemical reaction, they demonstrated a greatly enhanced conductivity in GDC. The result is a faster and more efficient conversion into electricity.

"This breakthrough will pave the path to fabricate next generation energy conversion and storage devices with significantly enhanced performance, increasing energy efficiency and making energy environmentally benign and sustainable," said Fanglin (Frank) Chen, a chemical engineering professor at the University of South Carolina.

"The origin of the low grain boundary conductivity is known to be segregation of gadolinium (Gd) in the grain boundary which leads to a built-in charge at the interface referred to as the space charge effect," Chen said. "This built in charge serves as a barrier for ion transport at the interface. The challenge is how to effectively avoid the segregation of Gd in the grain boundary. The grain boundary is extremely narrow, on the order of a few nano-meters. Therefore, it is extremely difficult to characterize and rationally control the amount of Gd in such a narrow region."

"In order to make 'clean' grain boundaries and avoid the segregation of Gd at the interface we have added an electronic conductor cobalt iron spinel (CFO), resulting in a composite structure," said Kyle Brinkman, a professor at Clemson University and co-author of the work.

"The CFO reacts with the excess Gd present in the grain boundary of GDC to form a third phase. It was found that this new phase could also serve as an excellent oxygen ionic conductor. We further investigated the atomic microstructure around the grain boundary through a series of high resolution characterization techniques and found that Gd segregation in the grain boundary had been eliminated, leading to dramatic improvement in the grain boundary oxygen ionic conductivity of GDC."

The improved oxygen ionic conductivity of GDC has been demonstrated in an oxygen permeation experiment where the elevated oxygen ion transport was used to separate pure oxygen from air at elevated temperatures. The approach of targeting emergent phases resulting in clean interfaces can be applied to a number of essential materials for energy conversion and storage devices used in handheld electronics, vehicles, and power plants, making them more cost-effective, efficient and environmentally friendly.

Currently, ceramic composites consisting of ionic and electronic conductive components like those in this study are under consideration for membrane separation devices that provide oxygen for enhanced conversion of coal and natural gas, as well as for membrane reactors used in natural gas conversion and recovery.

Other team members include Ye Lin and Shumin Fang, both from the University of South Carolina and Dong Su, a scientist at Brookhaven National Laboratory who contributed to the electron microscopy investigations.

Media Contact

Jeff Stensland
stenslan@mailbox.sc.edu
803-777-3686

 @UofSC

http://www.sc.edu/ 

Jeff Stensland | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms

05.12.2016 | Life Sciences

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>