Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Continues on Secure, Mobile, Quantum Communications

29.10.2009
Researcher Dr. David H. Hughes of the Air Force Research Laboratory in Rome, N.Y. is leading a team investigating long-distance, mobile optical links imperative for secure quantum communications capabilities in theater.

Hughes and his Air Force Office of Scientific Research-funded team have conducted high data-rate experiments using an optical laser link, a tool which exploits the quantum noise of light for higher security. The system uses adaptive optics for transmission of high data-rate video and audio signals over long distances.

AOptix Technologies, a developer of ultra-high bandwidth laser communication solutions for government and commercial markets has joined forces with AFOSR and AFRL to conduct flight tests at 10,000 feet to evaluate the performance of the high-altitude, air-to-ground, quantum communications links.

Up to this point, the challenge with free space optical links, which use fiber optics for transmission have been the turbulence or distortions from temperature differences that cause motion or wind in the atmosphere.

"When you transmit information through turbulence (motion in the atmosphere caused by turbulent cells or "wind") it's distorted just like the information coming from the light reflected off a distant, twinkling star to your eye. It's fuzzy," said Hughes. "You have to overcome that by using adaptive optics to rectify the distortion and get a better quality signal."

As of right now, Hughes and his team have established an optical link without distortion in test situations at a distance of 35 kilometers in both stationary and flight situations. The next flight test will aim for increased altitudes to demonstrate further air-to-ground distances.

"If we can now put one link on the ground and one on a demo aircraft, it wouldn't take much to apply the technology to operational aircraft for the Air Force," said Hughes.

"This new capability may even save lives because it will enable the military to access ultra-high bandwidth ISR (intelligence, surveillance reconnaissance) information in real-time from various manned and unmanned airborne platforms," said Dean Senner, President & CEO of AOptix Technologies.

ABOUT AFOSR:
The Air Force Office of Scientific Research, located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape, and champion basic science that profoundly impacts the future Air Force.
ABOUT AFRL:
The Air Force Research Laboratory is the heart of science and technology for the United States Air Force. AFRL is responsible for developing the systems crucial to aerospace superiority. With a workforce of approximately 9,600 people, the laboratory's wealth of talented individuals help AFRL lead science and technology development through in-house and contractual programs. Additionally, the laboratory outsources approximately 75% of its budget to industry, academia, and the international community - leveraging the world's knowledge to provide the most innovative science and technology to the Air Force.
ABOUT AOPTIX TECHNOLOGIES:
AOptix Technologies is a privately funded company founded in 2000. With core technology expertise in the application of advanced adaptive optics, they develop free space optical communications and iris biometrics based identification solutions for both government and commercial markets. For additional information, please see www.aoptix.com.

Maria Callier | EurekAlert!
Further information:
http://www.afosr.af.mil
http://www.wpafb.af.mil/news/story.asp?id=123174477

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>