Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fractals on new Mountbatten Building inspired by nanotechnology research

11.12.2007
The fractal patterns seen on the University of Southampton's new Mountbatten Building were inspired by research on optical nanotechnology research in the School of Electronics and Computer Science (ECS) and the Optoelectronic Research Centre (ORC).

These technologies are being applied to create new optoelectronic devices which could enhance optical communications or greatly reduce the cost of solar energy.

The £55 million building, currently under construction and due for completion in July 2008 will provide a world class facility that will allow ECS and the ORC to make more contributions in these exciting areas of research.

The fractals, which form an ornamental design on the glass of the new building, are inspired by research into optical metamaterials, conducted by Dr Darren Bagnall and Dr Adrian Potts at the University's School of Electronics & Computer Science (ECS) working with Professor Nikolay Zheludev of the ORC.

‘By drawing features that are much smaller than the wavelength of light, photons can be confused into doing things they normally wouldn’t do,’ said Dr Bagnall. ‘The chiral fractal structures when etched into glass at the nanoscale were shown to produce very unusual polarisation changes. By using similar technologies to produce other types of nanostructured arrays on the surfaces of solar cells we could also ensure that optical asymmetries are created that prevent light from escaping the solar cells.’

According to Dr Bagnall the light-trapping technologies could reduce the thickness of expensive semiconductor materials needed in solar panels, and this could directly reduce the cost of the devices. The first challenge is to prove that the technology works in practice, the second key challenge will be to develop cost effective ways to produce nanopatterned layers.

The research will continue in the new Mountbatten Building. The state-of-the-art, interdisciplinary facility designed specifically to meet the long-term research needs of the School of Electronics & Computer Science and the Optoelectronics Research Centre, contains a large purpose-built clean room and associated laboratories, along with offices and meeting space.

'The technology which will be available in our new building, coupled with our high-quality academics, students and support staff, will enable us to develop faster, smaller, lower-cost, lower power, more environmentally-friendly devices for the next generations of electronic products whilst continuing our pioneering work in computer science,' said Professor Harvey Rutt, Head of ECS.

Helene Murphy | alfa
Further information:
http://www.soton.ac.uk

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Party discipline for jumping genes

22.09.2017 | Life Sciences

The pyrenoid is a carbon-fixing liquid droplet

22.09.2017 | Life Sciences

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>