Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free software brings affordability, transparency to mathematics

10.12.2007
Until recently, a student solving a calculus problem, a physicist modeling a galaxy or a mathematician studying a complex equation had to use powerful computer programs that cost hundreds or thousands of dollars.

But an open-source tool based at the University of Washington won first prize in the scientific software division of Les Trophées du Libre, an international competition for free software.

The tool, called Sage, faced initial skepticism from the mathematics and education communities.

"I've had a surprisingly large number of people tell me that something like Sage couldn't be done -- that it just wasn't possible," said William Stein, associate professor of mathematics and lead developer of the tool. "I'm hearing that less now."

Open-source software, which distributes programs and all their underlying code for free, is increasingly used in everyday applications. Firefox, Linux and Open Office are well-known examples.

But until recently, nobody had done the same for the everyday tools used in mathematics. Over the past three years, more than a hundred mathematicians from around the world have worked with Stein to build a user-friendly tool that combines powerful number-crunching with new features, such as collaborative online worksheets.

"A lot of people said: 'Wow, I've been waiting forever for something like this,'" Stein said. "People are excited about it."

Sage can take the place of commercial software commonly used in mathematics education, in large government laboratories and in math-intensive research. The program can do anything from mapping a 12-dimensional object to calculating rainfall patterns under global warming.

The idea began in 2005, when Stein was an assistant professor at Harvard University.

"For about 10 years I had been really unhappy with the state of mathematical software," Stein said. The big commercial programs -- Matlab, Maple, Mathematica and Magma -- charge license fees. The Mathematica Web page, for example, charges $2,495 for a regular license. For another program, a collaborator in Colombia was quoted about $550, a special "Third World" discount price, to buy a license to use a particular tool, Stein said.

The frustrations weren't only financial. Commercial programs don't always reveal how the calculations are performed. This means that other mathematicians can't scrutinize the code to see how a computer-based calculation arrived at a result.

"Not being able to check the code of a computer-based calculation is like not publishing proofs for a mathematical theorem," Stein said. "It's ludicrous."

So Stein began a year and a half of frenzied work in which he created the Sage prototype, combining decades' worth of more specialized free mathematical software and filling in the gaps.

"I worked really, really hard on this, and didn't sleep much for a year. Now I've relaxed. There are a lot more people helping out," Stein said. "It seems like everyone in the field has heard of Sage now, which is surreal."

Among those helping is a team of five UW undergraduate students who work part-time on the code -- everything from writing new formulas to improving the Google-ish graphical interface. (Even when Sage runs on an individual computer, not over the Internet, you use a Web browser to enter commands.)

Regular meetings, named "Sage days," bring together volunteer developers. The fourth Sage day, held in Seattle in June, drew about 30 people. The sixth Sage day was held last month in Bristol, England. Forty-one people attended talks and many participated in coding sprints. Dozens of other people around the world contribute through Sage's online discussion boards.

Last month, Stein and David Joyner, a mathematics professor at the U.S. Naval Academy in Annapolis, Md., published a letter in the Notices of the American Mathematical Society in which they argue that the mathematical community should support and develop open-source software.

Soon Sage will face off against the major software companies in physical space. In early January, thousands of mathematicians will gather in San Diego for the joint meeting of the American Mathematical Society and the Mathematical Association of America. In the exhibition hall, Stein has paid the first-timers' rate of $400 to rent a booth alongside those of the major mathematical software companies, where he and students will hand out DVDs with copies of Sage.

"I think we can be better than the commercial versions," he said. "I really want it to be the best mathematical software in the world."

Sage research and student support is made possible by grants from the National Science Foundation. The Sage meetings are supported by various mathematical associations. The project has also received several thousand dollars in private donations.

Hannah Hickey | EurekAlert!
Further information:
http://www.washington.edu

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>