Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distribution of Fraunhofer IISB Lithography Simulation Software

05.12.2007
Starting from 2008, Fraunhofer IISB will market its advanced and proven lithography simulation models and software algorithms in its development and research simulator Dr.LiTHO. The software can be purchased from Fraunhofer IISB. The cooperation with SIGMA-C, now part of Synopsys, will no longer be continued.

The Fraunhofer IISB lithography simulation software will be distributed as the Dr.LiTHO [1, 2] software package. Dr.LiTHO was formerly used as the internal development and research lithography simulator of Fraunhofer IISB and can now be purchased from this institute. This direct approach to market replaces the collaboration with SIGMA-C. Following the acquisition of SIGMA-C by Synopsys, Synopsys and Fraunhofer IISB could not reach a new agreement on the terms for continuing the cooperation.

The Munich-based software house SIGMA-C has been the sales partner for the simulation algorithms developed by Fraunhofer. As frequently published during this long-lasting cooperation between Fraunhofer IISB and SIGMA-C, important kernel algorithms of the established lithography simulators SOLID-C, SOLID-EUV, and SOLID-E were developed at Fraunhofer IISB. This, among others, includes FDTD [3] and the Waveguide Method [4] for the rigorous simulation of light diffraction from optical masks and extensions thereof for the modeling of EUV masks [3], for lithographic exposures over topography [5], and decomposition techniques for the fast rigorous simulation of larger mask areas [6].

The Fraunhofer software Dr.LiTHO includes revised and optimized versions of the Waveguide Method for the rigorous simulation of mask diffraction effects, mesoscopic models for the description of line edge roughness (LER), and several interfaces for the coupling of lithography simulation flows with external academic or commercial simulators, in addition to standard simulation models which were also included in SOLID-E.

Dr.LiTHO employs a user concept based on the modern programming language Python. This approach offers wide portability, various methods for parallelization, easy-to-use visualization components, and much more [1, 2]. Dr.LiTHO can be easily adapted to the modeling of alternative lithography techniques such as interference exposures, near field lithography, and/or contact and proximity printing. Optionally, Dr.LiTHO can be combined with the advanced optimization tools of Fraunhofer IISB [1]. Additional capabilities and interfaces will be added to Dr.LiTHO through future research and development.

In the future, the advanced lithography simulation algorithms of Fraunhofer IISB will also be combined and commercialized in combination with various simulation and metrology tools of academic research groups and commercial suppliers. New developments in the distribution of the IISB simulation software, including strategic alliances, will be published on our web site [1]

and on appropriate occasions elsewhere.

A user group will be established to support the industrial application and further development of Dr.LiTHO. Fraunhofer IISB will support members of this user group to adapt the simulation algorithms of Dr.LiTHO to their specific purpose. The requirements as defined by the user group will have a strong impact on the further development of Dr.LiTHO, both for "traditional applications" of lithography simulation in projection printing for semiconductor fabrication and for alternative lithographic technologies and areas of application.

The Fraunhofer IISB lithography simulation group has a long-standing history in lithography simulation. Almost 20 years ago Wolfgang Henke, at that time at Fraunhofer IMT, started to develop algorithms for the simulation of lithographic projection printing processes [7]. Today, the lithography simulation group of Fraunhofer IISB led by Andreas Erdmann employs 8 scientists and PhD students with various backgrounds in physics/optics, electrical engineering, and computer science.

[1] www.drlitho.com.
[2] T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann: "Dr.LiTHO - a development and research lithography simulator", Proc. SPIE 6520 (2007) 65203F-1
[3] A. Vial, A. Erdmann, T. Schmöller, and C.K. Kalus: "Modification of boundaries conditions in the FDTD algorithm for EUV masks modelling", Proc. SPIE 4754 (2002) 890
[4] A. Erdmann and P. Evanschitzky: "Rigorous mask modeling using waveguide and FDTD methods", SIGMA-C User Workshop Japan, 21. April, 2006
P. Evanschitzky and A. Erdmann: "Fast near field simulation of optical and EUV masks using the Waveguide Method", Proc. of SPIE 6533 (2007) 65530Y
[5] A. Erdmann, C.K. Kalus, T. Schmöller, Y. Klyonova, T. Sato, A. Endo, T. Shibata, and Y. Kobayashi: "Rigorous simulation of exposure over nonplanar wafers", Proc. SPIE 5040 (2003) 101
[6] A. Erdmann, C.K. Kalus, T. Schmöller, and A. Wolter: "Efficient simulation of light diffraction from 3-dimensional EUV-masks using field decomposition techniques", Proc. SPIE 5037 (2003) 482

[7] W. Henke, R. Schwalm, M. Weiss, and J. Pelka: "Diffraction effects in submicron contact/proximity printing", Microelectronic Engineering 10 (1989)

Fraunhofer Institute of
Integrated Systems and
Device Technology (IISB)
Lithography Simulation
Dr. Andreas Erdmann
Phone +49 (0) 9131 761-258
Fax +49 (0) 9131 761-212
dr.litho@iisb.fraunhofer.de

Dr. Andreas Erdmann | Fraunhofer-Gesellschaft
Further information:
http://www.drlitho.com
http://www.iisb.fraunhofer.de

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>