Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distribution of Fraunhofer IISB Lithography Simulation Software

05.12.2007
Starting from 2008, Fraunhofer IISB will market its advanced and proven lithography simulation models and software algorithms in its development and research simulator Dr.LiTHO. The software can be purchased from Fraunhofer IISB. The cooperation with SIGMA-C, now part of Synopsys, will no longer be continued.

The Fraunhofer IISB lithography simulation software will be distributed as the Dr.LiTHO [1, 2] software package. Dr.LiTHO was formerly used as the internal development and research lithography simulator of Fraunhofer IISB and can now be purchased from this institute. This direct approach to market replaces the collaboration with SIGMA-C. Following the acquisition of SIGMA-C by Synopsys, Synopsys and Fraunhofer IISB could not reach a new agreement on the terms for continuing the cooperation.

The Munich-based software house SIGMA-C has been the sales partner for the simulation algorithms developed by Fraunhofer. As frequently published during this long-lasting cooperation between Fraunhofer IISB and SIGMA-C, important kernel algorithms of the established lithography simulators SOLID-C, SOLID-EUV, and SOLID-E were developed at Fraunhofer IISB. This, among others, includes FDTD [3] and the Waveguide Method [4] for the rigorous simulation of light diffraction from optical masks and extensions thereof for the modeling of EUV masks [3], for lithographic exposures over topography [5], and decomposition techniques for the fast rigorous simulation of larger mask areas [6].

The Fraunhofer software Dr.LiTHO includes revised and optimized versions of the Waveguide Method for the rigorous simulation of mask diffraction effects, mesoscopic models for the description of line edge roughness (LER), and several interfaces for the coupling of lithography simulation flows with external academic or commercial simulators, in addition to standard simulation models which were also included in SOLID-E.

Dr.LiTHO employs a user concept based on the modern programming language Python. This approach offers wide portability, various methods for parallelization, easy-to-use visualization components, and much more [1, 2]. Dr.LiTHO can be easily adapted to the modeling of alternative lithography techniques such as interference exposures, near field lithography, and/or contact and proximity printing. Optionally, Dr.LiTHO can be combined with the advanced optimization tools of Fraunhofer IISB [1]. Additional capabilities and interfaces will be added to Dr.LiTHO through future research and development.

In the future, the advanced lithography simulation algorithms of Fraunhofer IISB will also be combined and commercialized in combination with various simulation and metrology tools of academic research groups and commercial suppliers. New developments in the distribution of the IISB simulation software, including strategic alliances, will be published on our web site [1]

and on appropriate occasions elsewhere.

A user group will be established to support the industrial application and further development of Dr.LiTHO. Fraunhofer IISB will support members of this user group to adapt the simulation algorithms of Dr.LiTHO to their specific purpose. The requirements as defined by the user group will have a strong impact on the further development of Dr.LiTHO, both for "traditional applications" of lithography simulation in projection printing for semiconductor fabrication and for alternative lithographic technologies and areas of application.

The Fraunhofer IISB lithography simulation group has a long-standing history in lithography simulation. Almost 20 years ago Wolfgang Henke, at that time at Fraunhofer IMT, started to develop algorithms for the simulation of lithographic projection printing processes [7]. Today, the lithography simulation group of Fraunhofer IISB led by Andreas Erdmann employs 8 scientists and PhD students with various backgrounds in physics/optics, electrical engineering, and computer science.

[1] www.drlitho.com.
[2] T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann: "Dr.LiTHO - a development and research lithography simulator", Proc. SPIE 6520 (2007) 65203F-1
[3] A. Vial, A. Erdmann, T. Schmöller, and C.K. Kalus: "Modification of boundaries conditions in the FDTD algorithm for EUV masks modelling", Proc. SPIE 4754 (2002) 890
[4] A. Erdmann and P. Evanschitzky: "Rigorous mask modeling using waveguide and FDTD methods", SIGMA-C User Workshop Japan, 21. April, 2006
P. Evanschitzky and A. Erdmann: "Fast near field simulation of optical and EUV masks using the Waveguide Method", Proc. of SPIE 6533 (2007) 65530Y
[5] A. Erdmann, C.K. Kalus, T. Schmöller, Y. Klyonova, T. Sato, A. Endo, T. Shibata, and Y. Kobayashi: "Rigorous simulation of exposure over nonplanar wafers", Proc. SPIE 5040 (2003) 101
[6] A. Erdmann, C.K. Kalus, T. Schmöller, and A. Wolter: "Efficient simulation of light diffraction from 3-dimensional EUV-masks using field decomposition techniques", Proc. SPIE 5037 (2003) 482

[7] W. Henke, R. Schwalm, M. Weiss, and J. Pelka: "Diffraction effects in submicron contact/proximity printing", Microelectronic Engineering 10 (1989)

Fraunhofer Institute of
Integrated Systems and
Device Technology (IISB)
Lithography Simulation
Dr. Andreas Erdmann
Phone +49 (0) 9131 761-258
Fax +49 (0) 9131 761-212
dr.litho@iisb.fraunhofer.de

Dr. Andreas Erdmann | Fraunhofer-Gesellschaft
Further information:
http://www.drlitho.com
http://www.iisb.fraunhofer.de

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>