Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distribution of Fraunhofer IISB Lithography Simulation Software

05.12.2007
Starting from 2008, Fraunhofer IISB will market its advanced and proven lithography simulation models and software algorithms in its development and research simulator Dr.LiTHO. The software can be purchased from Fraunhofer IISB. The cooperation with SIGMA-C, now part of Synopsys, will no longer be continued.

The Fraunhofer IISB lithography simulation software will be distributed as the Dr.LiTHO [1, 2] software package. Dr.LiTHO was formerly used as the internal development and research lithography simulator of Fraunhofer IISB and can now be purchased from this institute. This direct approach to market replaces the collaboration with SIGMA-C. Following the acquisition of SIGMA-C by Synopsys, Synopsys and Fraunhofer IISB could not reach a new agreement on the terms for continuing the cooperation.

The Munich-based software house SIGMA-C has been the sales partner for the simulation algorithms developed by Fraunhofer. As frequently published during this long-lasting cooperation between Fraunhofer IISB and SIGMA-C, important kernel algorithms of the established lithography simulators SOLID-C, SOLID-EUV, and SOLID-E were developed at Fraunhofer IISB. This, among others, includes FDTD [3] and the Waveguide Method [4] for the rigorous simulation of light diffraction from optical masks and extensions thereof for the modeling of EUV masks [3], for lithographic exposures over topography [5], and decomposition techniques for the fast rigorous simulation of larger mask areas [6].

The Fraunhofer software Dr.LiTHO includes revised and optimized versions of the Waveguide Method for the rigorous simulation of mask diffraction effects, mesoscopic models for the description of line edge roughness (LER), and several interfaces for the coupling of lithography simulation flows with external academic or commercial simulators, in addition to standard simulation models which were also included in SOLID-E.

Dr.LiTHO employs a user concept based on the modern programming language Python. This approach offers wide portability, various methods for parallelization, easy-to-use visualization components, and much more [1, 2]. Dr.LiTHO can be easily adapted to the modeling of alternative lithography techniques such as interference exposures, near field lithography, and/or contact and proximity printing. Optionally, Dr.LiTHO can be combined with the advanced optimization tools of Fraunhofer IISB [1]. Additional capabilities and interfaces will be added to Dr.LiTHO through future research and development.

In the future, the advanced lithography simulation algorithms of Fraunhofer IISB will also be combined and commercialized in combination with various simulation and metrology tools of academic research groups and commercial suppliers. New developments in the distribution of the IISB simulation software, including strategic alliances, will be published on our web site [1]

and on appropriate occasions elsewhere.

A user group will be established to support the industrial application and further development of Dr.LiTHO. Fraunhofer IISB will support members of this user group to adapt the simulation algorithms of Dr.LiTHO to their specific purpose. The requirements as defined by the user group will have a strong impact on the further development of Dr.LiTHO, both for "traditional applications" of lithography simulation in projection printing for semiconductor fabrication and for alternative lithographic technologies and areas of application.

The Fraunhofer IISB lithography simulation group has a long-standing history in lithography simulation. Almost 20 years ago Wolfgang Henke, at that time at Fraunhofer IMT, started to develop algorithms for the simulation of lithographic projection printing processes [7]. Today, the lithography simulation group of Fraunhofer IISB led by Andreas Erdmann employs 8 scientists and PhD students with various backgrounds in physics/optics, electrical engineering, and computer science.

[1] www.drlitho.com.
[2] T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann: "Dr.LiTHO - a development and research lithography simulator", Proc. SPIE 6520 (2007) 65203F-1
[3] A. Vial, A. Erdmann, T. Schmöller, and C.K. Kalus: "Modification of boundaries conditions in the FDTD algorithm for EUV masks modelling", Proc. SPIE 4754 (2002) 890
[4] A. Erdmann and P. Evanschitzky: "Rigorous mask modeling using waveguide and FDTD methods", SIGMA-C User Workshop Japan, 21. April, 2006
P. Evanschitzky and A. Erdmann: "Fast near field simulation of optical and EUV masks using the Waveguide Method", Proc. of SPIE 6533 (2007) 65530Y
[5] A. Erdmann, C.K. Kalus, T. Schmöller, Y. Klyonova, T. Sato, A. Endo, T. Shibata, and Y. Kobayashi: "Rigorous simulation of exposure over nonplanar wafers", Proc. SPIE 5040 (2003) 101
[6] A. Erdmann, C.K. Kalus, T. Schmöller, and A. Wolter: "Efficient simulation of light diffraction from 3-dimensional EUV-masks using field decomposition techniques", Proc. SPIE 5037 (2003) 482

[7] W. Henke, R. Schwalm, M. Weiss, and J. Pelka: "Diffraction effects in submicron contact/proximity printing", Microelectronic Engineering 10 (1989)

Fraunhofer Institute of
Integrated Systems and
Device Technology (IISB)
Lithography Simulation
Dr. Andreas Erdmann
Phone +49 (0) 9131 761-258
Fax +49 (0) 9131 761-212
dr.litho@iisb.fraunhofer.de

Dr. Andreas Erdmann | Fraunhofer-Gesellschaft
Further information:
http://www.drlitho.com
http://www.iisb.fraunhofer.de

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>